Author
Listed:
- Stephan R Kuberski
- Adamantios I Gafos
Abstract
The speed-curvature power law is a celebrated law of motor control expressing a relation between the kinematic property of speed and the geometric property of curvature. We aimed to assess whether speech movements obey this law just as movements from other domains do. We describe a metronome-driven speech elicitation paradigm designed to cover a wide range of speeds. We recorded via electromagnetic articulometry speech movements in sequences of the form /CV…/ from nine speakers (five German, four English) speaking at eight distinct rates. First, we demonstrate that the paradigm of metronome-driven manipulations results in speech movement data consistent with earlier reports on the kinematics of speech production. Second, analysis of our data in their full three-dimensions and using advanced numerical differentiation methods offers stronger evidence for the law than that reported in previous studies devoted to its assessment. Finally, we demonstrate the presence of a clear rate dependency of the power law’s parameters. The robustness of the speed-curvature relation in our datasets lends further support to the hypothesis that the power law is a general feature of human movement. We place our results in the context of other work in movement control and consider implications for models of speech production.
Suggested Citation
Stephan R Kuberski & Adamantios I Gafos, 2019.
"The speed-curvature power law in tongue movements of repetitive speech,"
PLOS ONE, Public Library of Science, vol. 14(3), pages 1-25, March.
Handle:
RePEc:plo:pone00:0213851
DOI: 10.1371/journal.pone.0213851
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0213851. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.