Author
Listed:
- Lynda M Murray
- Maria Knikou
Abstract
Targeted neuromodulation strategies that strengthen neuronal activity are in great need for restoring sensorimotor function after chronic spinal cord injury (SCI). In this study, we established changes in the motoneuron output of individuals with and without SCI after repeated noninvasive transspinal stimulation at rest over the thoracolumbar enlargement, the spinal location of leg motor circuits. Cases of motor incomplete and complete SCI were included to delineate potential differences when corticospinal motor drive is minimal. All 10 SCI and 10 healthy control subjects received daily monophasic transspinal stimuli of 1-ms duration at 0.2 Hz at right soleus transspinal evoked potential (TEP) subthreshold and suprathreshold intensities at rest. Before and two days after cessation of transspinal stimulation, we determined changes in TEP recruitment input-output curves, TEP amplitude at stimulation frequencies of 0.1, 0.125, 0.2, 0.33 and 1.0 Hz, and TEP postactivation depression upon transspinal paired stimuli at interstimulus intervals of 60, 100, 300, and 500 ms. TEPs were recorded at rest from bilateral ankle and knee flexor/extensor muscles. Repeated transspinal stimulation increased the motoneuron output over multiple segments. In control and complete SCI subjects, motoneuron output increased for knee muscles, while in motor incomplete SCI subjects motoneuron output increased for both ankle and knee muscles. In control subjects, TEPs homosynaptic and postactivation depression were present at baseline, and were potentiated for the distal ankle or knee flexor muscles. TEPs homosynaptic and postactivation depression at baseline depended on the completeness of the SCI, with minimal changes observed after transspinal stimulation. These results indicate that repeated transspinal stimulation increases spinal motoneuron responsiveness of ankle and knee muscles in the injured human spinal cord, and thus can promote motor recovery. This noninvasive neuromodulation method is a promising modality for promoting functional neuroplasticity after SCI.
Suggested Citation
Lynda M Murray & Maria Knikou, 2019.
"Transspinal stimulation increases motoneuron output of multiple segments in human spinal cord injury,"
PLOS ONE, Public Library of Science, vol. 14(3), pages 1-21, March.
Handle:
RePEc:plo:pone00:0213696
DOI: 10.1371/journal.pone.0213696
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0213696. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.