IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0213292.html
   My bibliography  Save this article

A clinical decision support system learned from data to personalize treatment recommendations towards preventing breast cancer metastasis

Author

Listed:
  • Xia Jiang
  • Alan Wells
  • Adam Brufsky
  • Richard Neapolitan

Abstract

Objective: A Clinical Decision Support System (CDSS) that can amass Electronic Health Record (EHR) and other patient data holds promise to provide accurate classification and guide treatment choices. Our objective is to develop the Decision Support System for Making Personalized Assessments and Recommendations Concerning Breast Cancer Patients (DPAC), which is a CDSS learned from data that recommends the optimal treatment decisions based on a patient’s features. Method: We developed a Bayesian network architecture called Causal Modeling with Internal Layers (CAMIL), and an algorithm called Treatment Feature Interactions (TFI), which learns from data the interactions needed in a CAMIL model. Using the TFI algorithm, we learned interactions for six treatments from the LSDS-5YDM dataset. We created a CAMIL model using these interactions, resulting in a DPAC which recommends treatments towards preventing 5-year breast cancer metastasis. Results: In a 5-fold cross-validation analysis, we compared the probability of being metastasis free in 5 years for patients who made decisions recommended by DPAC to those who did not. These probabilities are (the probability for those making the decisions appears first): chemotherapy (.938, .872); breast/chest wall radiation (.939, .902); nodal field radiation (.940, .784); antihormone (.941, .906); HER2 inhibitors (.934, .880); neadjuvant therapy (.931, .837). In an application of DPAC to the independent METABRIC dataset, the probabilities for chemotherapy were (.845, .788). Discussion: Patients who took the advice of DPAC had, as a group, notably better outcomes than those who did not. We conclude that DPAC is effective at amassing and analyzing data towards treatment recommendations. Some of the findings in DPAC are controversial. For example, DPAC says that chemotherapy increases the chances of metastasis for many node negative patients. This controversy shows the importance of developing a conclusive version of DPAC to ensure we provide patients with the best patient-specific treatment recommendations.

Suggested Citation

  • Xia Jiang & Alan Wells & Adam Brufsky & Richard Neapolitan, 2019. "A clinical decision support system learned from data to personalize treatment recommendations towards preventing breast cancer metastasis," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-18, March.
  • Handle: RePEc:plo:pone00:0213292
    DOI: 10.1371/journal.pone.0213292
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213292
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0213292&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0213292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Tu Guang & Jang, Sunghyon & Yamaguchi, Akira, 2019. "A novel method for risk-informed decision-making under non-ideal Instrumentation and Control conditions through the application of Bayes’ Theorem," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 463-472.
    2. Lucas Wirbka & Walter E Haefeli & Andreas D Meid, 2020. "A framework to build similarity-based cohorts for personalized treatment advice – a standardized, but flexible workflow with the R package SimBaCo," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0213292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.