IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0213245.html
   My bibliography  Save this article

Optimizing predictive performance of criminal recidivism models using registration data with binary and survival outcomes

Author

Listed:
  • Nikolaj Tollenaar
  • Peter G M van der Heijden

Abstract

In a recidivism prediction context, there is no consensus on which modeling strategy should be followed for obtaining an optimal prediction model. In previous papers, a range of statistical and machine learning techniques were benchmarked on recidivism data with a binary outcome. However, two important tree ensemble methods, namely gradient boosting and random forests were not extensively evaluated. In this paper, we further explore the modeling potential of these techniques in the binary outcome criminal prediction context. Additionally, we explore the predictive potential of classical statistical and machine learning methods for censored time-to-event data. A range of statistical manually specified statistical and (semi-)automatic machine learning models is fitted on Dutch recidivism data, both for the binary outcome case and censored outcome case. To enhance generalizability of results, the same models are applied to two historical American data sets, the North Carolina prison data. For all datasets, (semi-) automatic modeling in the binary case seems to provide no improvement over an appropriately manually specified traditional statistical model. There is however evidence of slightly improved performance of gradient boosting in survival data. Results on the reconviction data from two sources suggest that both statistical and machine learning should be tried out for obtaining an optimal model. Even if a flexible black-box model does not improve upon the predictions of a manually specified model, it can serve as a test whether important interactions are missing or other misspecification of the model are present and can thus provide more security in the modeling process.

Suggested Citation

  • Nikolaj Tollenaar & Peter G M van der Heijden, 2019. "Optimizing predictive performance of criminal recidivism models using registration data with binary and survival outcomes," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-37, March.
  • Handle: RePEc:plo:pone00:0213245
    DOI: 10.1371/journal.pone.0213245
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213245
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0213245&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0213245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kigerl, Alex & Hamilton, Zachary & Kowalski, Melissa & Mei, Xiaohan, 2022. "The great methods bake-off: Comparing performance of machine learning algorithms," Journal of Criminal Justice, Elsevier, vol. 82(C).
    2. Guido Vittorio Travaini & Federico Pacchioni & Silvia Bellumore & Marta Bosia & Francesco De Micco, 2022. "Machine Learning and Criminal Justice: A Systematic Review of Advanced Methodology for Recidivism Risk Prediction," IJERPH, MDPI, vol. 19(17), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0213245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.