Author
Listed:
- Alba Martín-Yebra
- Juan Pablo Martínez
Abstract
Patients with left bundle branch block (LBBB) are known to have a good clinical response to cardiac resynchronization therapy. However, the high number of false positive diagnosis obtained with the conventional LBBB criteria limits the effectiveness of this therapy, which has yielded to the definition of new stricter criteria. They require prolonged QRS duration, a QS or rS pattern in the QRS complexes at leads V1 and V2 and the presence of mid-QRS notch/slurs in 2 leads within V1, V2, V5, V6, I and aVL. The aim of this work was to develop and assess a fully-automatic algorithm for strict LBBB diagnosis based on the wavelet transform. Twelve-lead, high-resolution, 10-second ECGs from 602 patients enrolled in the MADIT-CRT trial were available. Data were labelled for strict LBBB by 2 independent experts and divided into training (n = 300) and validation sets (n = 302) for assessing algorithm performance. After QRS detection, a wavelet-based delineator was used to detect individual QRS waves (Q, R, S), QRS onsets and ends, and to identify the morphological QRS pattern on each standard lead. Then, multilead QRS boundaries were defined in order to compute the global QRS duration. Finally, an automatic algorithm for notch/slur detection within the QRS complex was applied based on the same wavelet approach used for delineation. In the validation set, LBBB was diagnosed with a sensitivity and specificity of Se = 92.9% and Sp = 65.1% (Acc = 79.5%, PPV = 74% and NPV = 89.6%). The results confirmed that diagnosis of strict LBBB can be done based on a fully automatic extraction of temporal and morphological QRS features. However, it became evident that consensus in the definition of QRS duration as well as notch and slurs definitions is necessary in order to guarantee accurate and repeatable diagnosis of complete LBBB.
Suggested Citation
Alba Martín-Yebra & Juan Pablo Martínez, 2019.
"Automatic diagnosis of strict left bundle branch block using a wavelet-based approach,"
PLOS ONE, Public Library of Science, vol. 14(2), pages 1-11, February.
Handle:
RePEc:plo:pone00:0212971
DOI: 10.1371/journal.pone.0212971
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0212971. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.