IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0212849.html
   My bibliography  Save this article

DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving the classification of hESC

Author

Listed:
  • Rajkumar Theagarajan
  • Bir Bhanu

Abstract

Human embryonic stem cells (hESC), derived from the blastocysts, provide unique cellular models for numerous potential applications. They have great promise in the treatment of diseases such as Parkinson’s, Huntington’s, diabetes mellitus, etc. hESC are a reliable developmental model for early embryonic growth because of their ability to divide indefinitely (pluripotency), and differentiate, or functionally change, into any adult cell type. Their adaptation to toxicological studies is particularly attractive as pluripotent stem cells can be used to model various stages of prenatal development. Automated detection and classification of human embryonic stem cell in videos is of great interest among biologists for quantified analysis of various states of hESC in experimental work. Currently video annotation is done by hand, a process which is very time consuming and exhaustive. To solve this problem, this paper introduces DeephESC 2.0 an automated machine learning approach consisting of two parts: (a) Generative Multi Adversarial Networks (GMAN) for generating synthetic images of hESC, (b) a hierarchical classification system consisting of Convolution Neural Networks (CNN) and Triplet CNNs to classify phase contrast hESC images into six different classes namely: Cell clusters, Debris, Unattached cells, Attached cells, Dynamically Blebbing cells and Apoptically Blebbing cells. The approach is totally non-invasive and does not require any chemical or staining of hESC. DeephESC 2.0 is able to classify hESC images with an accuracy of 93.23% out performing state-of-the-art approaches by at least 20%. Furthermore, DeephESC 2.0 is able to generate large number of synthetic images which can be used for augmenting the dataset. Experimental results show that training DeephESC 2.0 exclusively on a large amount of synthetic images helps to improve the performance of the classifier on original images from 93.23% to 94.46%. This paper also evaluates the quality of the generated synthetic images using the Structural SIMilarity (SSIM) index, Peak Signal to Noise ratio (PSNR) and statistical p-value metrics and compares them with state-of-the-art approaches for generating synthetic images. DeephESC 2.0 saves hundreds of hours of manual labor which would otherwise be spent on manually/semi-manually annotating more and more videos.

Suggested Citation

  • Rajkumar Theagarajan & Bir Bhanu, 2019. "DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving the classification of hESC," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-28, March.
  • Handle: RePEc:plo:pone00:0212849
    DOI: 10.1371/journal.pone.0212849
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212849
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212849&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0212849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0212849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.