IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0211943.html
   My bibliography  Save this article

The organization of leukotriene biosynthesis on the nuclear envelope revealed by single molecule localization microscopy and computational analyses

Author

Listed:
  • Angela B Schmider
  • Melissa Vaught
  • Nicholas C Bauer
  • Hunter L Elliott
  • Matthew D Godin
  • Giorgianna E Ellis
  • Peter A Nigrovic
  • Roy J Soberman

Abstract

The initial steps in the synthesis of leukotrienes are the translocation of 5-lipoxygenase (5-LO) to the nuclear envelope and its subsequent association with its scaffold protein 5-lipoxygenase-activating protein (FLAP). A major gap in our understanding of this process is the knowledge of how the organization of 5-LO and FLAP on the nuclear envelope regulates leukotriene synthesis. We combined single molecule localization microscopy with Clus-DoC cluster analysis, and also a novel unbiased cluster analysis to analyze changes in the relationships between 5-LO and FLAP in response to activation of RBL-2H3 cells to generate leukotriene C4. We identified the time-dependent reorganization of both 5-LO and FLAP into higher-order assemblies or clusters in response to cell activation via the IgE receptor. Clus-DoC analysis identified a subset of these clusters with a high degree of interaction between 5-LO and FLAP that specifically correlates with the time course of LTC4 synthesis, strongly suggesting their role in the initiation of leukotriene biosynthesis.

Suggested Citation

  • Angela B Schmider & Melissa Vaught & Nicholas C Bauer & Hunter L Elliott & Matthew D Godin & Giorgianna E Ellis & Peter A Nigrovic & Roy J Soberman, 2019. "The organization of leukotriene biosynthesis on the nuclear envelope revealed by single molecule localization microscopy and computational analyses," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-19, February.
  • Handle: RePEc:plo:pone00:0211943
    DOI: 10.1371/journal.pone.0211943
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211943
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0211943&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0211943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sarah L Veatch & Benjamin B Machta & Sarah A Shelby & Ethan N Chiang & David A Holowka & Barbara A Baird, 2012. "Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carla Coltharp & Rene P Kessler & Jie Xiao, 2012. "Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-15, December.
    2. Sameera Vipat & Dipika Gupta & Sagun Jonchhe & Hele Anderspuk & Eli Rothenberg & Tatiana N. Moiseeva, 2022. "The non-catalytic role of DNA polymerase epsilon in replication initiation in human cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Samsuzzoha Mondal & Karthik Narayan & Samuel Botterbusch & Imania Powers & Jason Zheng & Honey Priya James & Rui Jin & Tobias Baumgart, 2022. "Multivalent interactions between molecular components involved in fast endophilin mediated endocytosis drive protein phase separation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0211943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.