Author
Listed:
- Renante Rondina II
- Rosanna K Olsen
- Lingqian Li
- Jed A Meltzer
- Jennifer D Ryan
Abstract
In aging, structural and/or functional brain changes may precede changes in cognitive performance. We previously showed that despite having hippocampal volumes similar to those of younger adults, older adults showed oscillatory changes during the encoding phase of a short-delay visuospatial memory task that required spatial relations among objects to be bound across time (Rondina et al., 2016). The present work provides a complementary set of analyses to examine age-related changes in oscillatory activity during maintenance and retrieval of those spatial relations in order to provide a comprehensive examination of the neural dynamics that support memory function in aging. Participants were presented with three study objects sequentially. Following a delay (maintenance phase), the objects were re-presented simultaneously and participants had to determine whether the relative spatial relations among the objects had been maintained (retrieval phase). Older adults had similar task accuracy, but slower response times, compared to younger adults. Both groups showed a decrease in theta (2-7Hz), alpha (9-14Hz), and beta (15-30Hz) power during the maintenance phase. During the retrieval phase, younger adults showed theta and beta power increases that predicted greater task accuracy, whereas older adults showed a widespread decrease in each of the three frequency ranges that predicted longer response latencies. Older adults also showed distinct patterns of behaviour-related activity depending on whether the analysis was time-locked to the onset of the stimulus or to the onset of the response during the test phase. These findings suggest that older adults may experience declines in relational binding and/or comparison processes that are reflected in oscillatory changes prior to structural decline.
Suggested Citation
Renante Rondina II & Rosanna K Olsen & Lingqian Li & Jed A Meltzer & Jennifer D Ryan, 2019.
"Age-related changes to oscillatory dynamics during maintenance and retrieval in a relational memory task,"
PLOS ONE, Public Library of Science, vol. 14(2), pages 1-24, February.
Handle:
RePEc:plo:pone00:0211851
DOI: 10.1371/journal.pone.0211851
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0211851. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.