IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0211780.html
   My bibliography  Save this article

A general dose-response relationship for chronic chemical and other health stressors and mixtures based on an emergent illness severity model

Author

Listed:
  • James D Englehardt
  • Weihsueh A Chiu

Abstract

Current efforts to assess human health response to chemicals based on high-throughput in vitro assay data on intra-cellular changes have been hindered for some illnesses by lack of information on higher-level extracellular, inter-organ, and organism-level interactions. However, a dose-response function (DRF), informed by various levels of information including apical health response, can represent a template for convergent top-down, bottom-up analysis. In this paper, a general DRF for chronic chemical and other health stressors and mixtures is derived based on a general first-order model previously derived and demonstrated for illness progression. The derivation accounts for essential autocorrelation among initiating event magnitudes along a toxicological mode of action, typical of complex processes in general, and reveals the inverse relationship between the minimum illness-inducing dose, and the illness severity per unit dose (both variable across a population). The resulting emergent DRF is theoretically scale-inclusive and amenable to low-dose extrapolation. The two-parameter single-toxicant version can be monotonic or sigmoidal, and is demonstrated preferable to traditional models (multistage, lognormal, generalized linear) for the published cancer and non-cancer datasets analyzed: chloroform (induced liver necrosis in female mice); bromate (induced dysplastic focia in male inbred rats); and 2-acetylaminofluorene (induced liver neoplasms and bladder carcinomas in 20,328 female mice). Common- and dissimilar-mode mixture models are demonstrated versus orthogonal data on toluene/benzene mixtures (mortality in Japanese medaka, Oryzias latipes, following embryonic exposure). Findings support previous empirical demonstration, and also reveal how a chemical with a typical monotonically-increasing DRF can display a J-shaped DRF when a second, antagonistic common-mode chemical is present. Overall, the general DRF derived here based on an autocorrelated first-order model appears to provide both a strong theoretical/biological basis for, as well as an accurate statistical description of, a diverse, albeit small, sample of observed dose-response data. The further generalizability of this conclusion can be tested in future analyses comparing with traditional modeling approaches across a broader range of datasets.

Suggested Citation

  • James D Englehardt & Weihsueh A Chiu, 2019. "A general dose-response relationship for chronic chemical and other health stressors and mixtures based on an emergent illness severity model," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
  • Handle: RePEc:plo:pone00:0211780
    DOI: 10.1371/journal.pone.0211780
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211780
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0211780&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0211780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0211780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.