IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0210385.html
   My bibliography  Save this article

Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems

Author

Listed:
  • Xinmin Liu
  • Rodney D Wiersma

Abstract

Purpose: Robotic stabilization of a therapeutic radiation beam with respect to a dynamically moving tumor target can be accomplished either by moving the radiation source, the patient, or both. As the treatment beam is on during this process, the primary goal is to minimize exposure of normal tissue to radiation as much as possible when moving the target back to the desired position. Due to the complex mechanical structure of 6 degree-of-freedom (6DoF) robots, it is not intuitive as to what 6 dimensional (6D) correction trajectory is optimal in achieving such a goal. With proportional-integrative-derivative (PID) and other controls, the potential exists that the controller may generate a trajectory that is highly curved, slow, or suboptimal in that it leads to unnecessary exposure of healthy tissue to radiation. This work investigates a novel feedback planning method that takes into account a robot’s mechanical joint structure, patient safety tolerances, and other system constraints, and performs real-time optimization to search the entire 6D trajectory space in each time cycle so it can respond with an optimal 6D correction trajectory. Methods: Computer simulations were created for two 6DoF robotic patient support systems: a Stewart-Gough platform for moving a patient’s head in frameless maskless stereotactic radiosurgery, and a linear accelerator treatment table for moving a patient in prostate cancer radiation therapy. Motion planning was formulated as an optimization problem and solved at real-time speeds using the L-BFGS algorithm. Three planning methods were investigated, moving the platform as fast as possible (platform-D), moving the target along a straight-line (target-S), and moving the target based on the fastest descent of position error (target-D). Both synthetic motion and prior recorded human motion were used as input data and output results were analyzed. Results: For randomly generated 6D step-like and sinusoidal synthetic input motion, target-D planning demonstrated the smallest net trajectory error in all cases. On average, optimal planning was found to have a 45% smaller target trajectory error than platform-D control, and a 44% smaller target trajectory error than target-S planning. For patient head motion compensation, only target-D planning was able to maintain a ≤0.5mm and ≤0.5deg clinical tolerance objective for 100% of the treatment time. For prostate motion, both target-S planning and target-D planning outperformed platform-D control. Conclusions: A general 6D target trajectory optimization framework for robotic patient motion compensation systems was investigated. The method was found to be flexible as it allows control over various performance requirements such as mechanical limits, velocities, acceleration, or other system control objectives.

Suggested Citation

  • Xinmin Liu & Rodney D Wiersma, 2019. "Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-16, January.
  • Handle: RePEc:plo:pone00:0210385
    DOI: 10.1371/journal.pone.0210385
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210385
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0210385&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0210385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinícius Antonio Battagello & Nei Yoshihiro Soma & Rubens Junqueira Magalhães Afonso, 2020. "Computational load reduction of the agent guidance problem using Mixed Integer Programming," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-45, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0210385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.