Author
Listed:
- Baohua Yang
- Yuan Gao
- Hongmin Li
- Shengbo Ye
- Hongxia He
- Shenru Xie
Abstract
Free amino acids are an important indicator of the freshness of yellow tea. This study investigated a novel procedure for predicting the free amino acid (FAA) concentration of yellow tea. It was developed based on the combined spectral and textural features from hyperspectral images. For the purposes of exploration and comparison, hyperspectral images of yellow tea (150 samples) were captured and analyzed. The raw spectra were preprocessed with Savitzky-Golay (SG) smoothing. To reduce the dimension of spectral data, five feature wavelengths were extracted using the successive projections algorithm (SPA). Five textural features (angular second moment, entropy, contrast, correlation, and homogeneity) were extracted as textural variables from the characteristic grayscale images of the five characteristic wavelengths using the gray-level co-occurrence matrix (GLCM). The FAA content prediction model with different variables was established by a genetic algorithm-support vector regression (GA-SVR) algorithm. The results showed that better prediction results were obtained by combining the feature wavelengths and textural variables. Compared with other data, this prediction result was still very satisfactory in the GA-SVR model, indicating that data fusion was an effective way to enhance hyperspectral imaging ability for the determination of free amino acid values in yellow tea.
Suggested Citation
Baohua Yang & Yuan Gao & Hongmin Li & Shengbo Ye & Hongxia He & Shenru Xie, 2019.
"Rapid prediction of yellow tea free amino acids with hyperspectral images,"
PLOS ONE, Public Library of Science, vol. 14(2), pages 1-17, February.
Handle:
RePEc:plo:pone00:0210084
DOI: 10.1371/journal.pone.0210084
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0210084. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.