IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0209427.html
   My bibliography  Save this article

Effect of soil moisture on soil disintegration characteristics of different weathering profiles of collapsing gully in the hilly granitic region, South China

Author

Listed:
  • Dong Xia
  • Bingqin Zhao
  • Daxiang Liu
  • Yusong Deng
  • Hu Cheng
  • Yujie Yan
  • Shuwen Ding
  • Chongfa Cai

Abstract

Collapsing gully erosion is the main important and specific soil erosion type in the red soil region of tropical and subtropical South China. Knowledge of the soil disintegration characteristics within different weathering profiles (surface layer, red soil layer, sandy soil layer and detritus layer) and its relationships with soil particle size distribution and soil properties is important in understanding the mechanism of the forming process and development of the collapsing gully. In this paper, we conducted an experiment on four collapsing gullies located four counties (Tongcheng County, Gan County, Anxi County and Wuhua County) in the hilly granitic region of southern China. The anti-disintegration ability of the different weathering profiles with two different moisture conditions (the air-dried condition and the natural state condition) were determined by the anti-disintegration index (Kc) and measured by the submerging test. The results show that the coarse particles are higher in the sandy soil layer and the detritus layer of collapsing gully than that in the surface layer and the red soil layer, but the finer particles show the inversed order. The Kc values reduce significantly from the surface layer to the detritus layer. In the surface layer and the red soil layer, the Kc values in the natural state condition are much higher than that in the air-dried condition. The results highlight that, the sandy soil layer and the detritus layer are easily to disintegrate compare with the surface layer and the red soil layer, and in the case of low soil water content, the soil in any layer of collapsing gully is easy to disintegrate. The regression equation shows a very significant and positive relationship between the Kc values and the

Suggested Citation

  • Dong Xia & Bingqin Zhao & Daxiang Liu & Yusong Deng & Hu Cheng & Yujie Yan & Shuwen Ding & Chongfa Cai, 2018. "Effect of soil moisture on soil disintegration characteristics of different weathering profiles of collapsing gully in the hilly granitic region, South China," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-19, December.
  • Handle: RePEc:plo:pone00:0209427
    DOI: 10.1371/journal.pone.0209427
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209427
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0209427&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0209427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dong Xia & Yusong Deng & Shuling Wang & Shuwen Ding & Chongfa Cai, 2015. "Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 455-478, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinlei Sun & Liansheng Tang & Jianbin Xie, 2022. "Relationship between Disintegration Characteristics and Intergranular Suction in Red Soil," Sustainability, MDPI, vol. 14(21), pages 1-32, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuyue Feng & Hui Wen & Shimin Ni & Junguang Wang & Chongfa Cai, 2019. "Degradation Characteristics of Soil-Quality-Related Physical and Chemical Properties Affected by Collapsing Gully: The Case of Subtropical Hilly Region, China," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    2. Haonian Li & Zhongju Meng & Xiaohong Dang & Puchang Yang, 2022. "Checkerboard Barriers Attenuate Soil Particle Loss and Promote Nutrient Contents of Soil," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    3. Caili Sun & Guobin Liu & Sha Xue, 2016. "Land-Use Conversion Changes the Multifractal Features of Particle-Size Distribution on the Loess Plateau of China," IJERPH, MDPI, vol. 13(8), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0209427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.