IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0209025.html
   My bibliography  Save this article

Change in fish functional diversity and assembly rules in the course of tidal marsh restoration

Author

Listed:
  • Alain Lechêne
  • Jérémy Lobry
  • Philippe Boët
  • Pascal Laffaille

Abstract

Functional trait theory provides a mechanistic framework to understand change in community composition and community assembly through time and space. Despite this, trait-based approaches have seldom been used in ecological restoration. Succession theory predicts that habitat complexity and resource availability will increase with restoration time, leading to increased functional dissimilarity among coexisting species. However, in the case of tidal marsh restoration, it is not clear whether reestablishing the harsh abiotic conditions typical of estuaries will initiate successional trajectories. We investigated monotonic changes in the functional structure of fish communities and shifts in assembly mechanisms, with tidal restoration time. A five-level gradient of ‘intertidal habitat naturalness’ was constructed from a set of artificialized (dyked), restored (with different ages) and natural intertidal sites, and used as a surrogate for restoration progress. The fish ecophases were described using ten functional traits related to food acquisition and swimming ability. The trends in six functional dimensions (identity, richness, evenness, dispersion, originality and specialization) were investigated along the naturalness gradient. Consistenly with succession theory, functional specialization, dispersion and, less markedly, richness increased with intertidal naturalness meaning that restored and natural intertidal habitats supplied fish with specific foraging and dwelling conditions absent from dyked marshes. Community assembly patterns varied with respect to traits and differed at both ends of the naturalness gradient. Dyked marshes were more affected by trait convergence possibly due to limiting resources. Environmental filtering was detected all along the naturalness gradient although the traits affected varied depending on the naturalness level of habitats. Environmental filtering tended to decrease in restored and natural intertidal habitats. Increased naturalness restored the attractivity of benthic habitats as feeding or settling grounds, promoted shelter-seeking vs. free-swimming strategists and favoured ecophases with carnivorous diets, feeding on microinvertebrates and benthic low-mobility macroinvertebrates. Approaches based on functional trait diversity have the potential to question and refine the theoretical frame of ecological restoration and to assist managers in their efforts to restore tidal wetlands.

Suggested Citation

  • Alain Lechêne & Jérémy Lobry & Philippe Boët & Pascal Laffaille, 2018. "Change in fish functional diversity and assembly rules in the course of tidal marsh restoration," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-27, December.
  • Handle: RePEc:plo:pone00:0209025
    DOI: 10.1371/journal.pone.0209025
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209025
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0209025&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0209025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0209025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.