IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0208989.html
   My bibliography  Save this article

Using a stacked-autoencoder neural network model to estimate sea state bias for a radar altimeter

Author

Listed:
  • Xiangying Miao
  • Hongli Miao
  • Yongjun Jia
  • Yingting Guo

Abstract

This paper constructed a stacked-autoencoder neural network model (SAE model) to estimate sea state bias (SSB) based on radar altimeter data. Six cycles of the geophysical data record (GDR) from Jason-1/2 radar altimeters were used as a training dataset, and the other 2 cycles of the GDR from Jason-1/2 were used for testing. The inputs to this SAE model include the significant wave height (SWH), wind speed (U), sea surface height (SSH), backscatter coefficient (σ0) and automatic gain control (AGC), and the model outputs the SSB. The model includes one input layer, three hidden layers and one output layer. The SSBs in the GDR of Jason-1/2 were obtained from a nonparametric model based on the SWH and U as input variables; thus, the model has high accuracy but low efficiency. The SSBs in the GDR of HY-2A were computed using a four-parameter parametric model that uses the SWH and U as input variables; therefore, this model’s computational speed is high but its accuracy is low. Thus, we used the HY-2A radar altimeter as an unseen validation dataset to evaluate the performance of the SAE model. Then, we analyzed the contrasting results of these methods, including the differences in the SSB, explained variance, residual error and operational efficiency. The results demonstrate not only that the accuracy of the SAE model is superior to that of the conventional parametric model but also that its operational efficiency is better than that of the nonparametric model.

Suggested Citation

  • Xiangying Miao & Hongli Miao & Yongjun Jia & Yingting Guo, 2018. "Using a stacked-autoencoder neural network model to estimate sea state bias for a radar altimeter," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-10, December.
  • Handle: RePEc:plo:pone00:0208989
    DOI: 10.1371/journal.pone.0208989
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208989
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0208989&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0208989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toğaçar, Mesut & Cömert, Zafer & Ergen, Burhan, 2021. "Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0208989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.