IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0208924.html
   My bibliography  Save this article

Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk Neuroblastoma

Author

Listed:
  • Valerio Maggio
  • Marco Chierici
  • Giuseppe Jurman
  • Cesare Furlanello

Abstract

We introduce the CDRP (Concatenated Diagnostic-Relapse Prognostic) architecture for multi-task deep learning that incorporates a clinical algorithm, e.g., a risk stratification schema to improve prognostic profiling. We present the first application to survival prediction in High-Risk (HR) Neuroblastoma from transcriptomics data, a task that studies from the MAQC consortium have shown to remain the hardest among multiple diagnostic and prognostic endpoints predictable from the same dataset. To obtain a more accurate risk stratification needed for appropriate treatment strategies, CDRP combines a first component (CDRP-A) synthesizing a diagnostic task and a second component (CDRP-N) dedicated to one or more prognostic tasks. The approach leverages the advent of semi-supervised deep learning structures that can flexibly integrate multimodal data or internally create multiple processing paths. CDRP-A is an autoencoder trained on gene expression on the HR/non-HR risk stratification by the Children’s Oncology Group, obtaining a 64-node representation in the bottleneck layer. CDRP-N is a multi-task classifier for two prognostic endpoints, i.e., Event-Free Survival (EFS) and Overall Survival (OS). CDRP-A provides the HR embedding input to the CDRP-N shared layer, from which two branches depart to model EFS and OS, respectively. To control for selection bias, CDRP is trained and evaluated using a Data Analysis Protocol (DAP) developed within the MAQC initiative. CDRP was applied on Illumina RNA-Seq of 498 Neuroblastoma patients (HR: 176) from the SEQC study (12,464 Entrez genes) and on Affymetrix Human Exon Array expression profiles (17,450 genes) of 247 primary diagnostic Neuroblastoma of the TARGET NBL cohort. On the SEQC HR patients, CDRP achieves Matthews Correlation Coefficient (MCC) 0.38 for EFS and MCC = 0.19 for OS in external validation, improving over published SEQC models. We show that a CDRP-N embedding is indeed parametrically associated to increasing severity and the embedding can be used to better stratify patients’ survival.

Suggested Citation

  • Valerio Maggio & Marco Chierici & Giuseppe Jurman & Cesare Furlanello, 2018. "Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk Neuroblastoma," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-19, December.
  • Handle: RePEc:plo:pone00:0208924
    DOI: 10.1371/journal.pone.0208924
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208924
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0208924&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0208924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0208924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.