Author
Listed:
- Ainara Garzo
- Paula Alexandra Silva
- Nestor Garay-Vitoria
- Erik Hernandez
- Stephen Cullen
- Valérie Cochen De Cock
- Petra Ihalainen
- Rudi Villing
Abstract
Background: Rhythmic Auditory Stimulation (RAS) is an effective technique to improve gait and reduce freezing episodes for Persons with Parkinson’s Disease (PwPD). The BeatHealth system, which comprises a mobile application, gait sensors, and a website, exploits the potential of the RAS technique. This paper describes the tools used for co-designing and evaluating the system and discusses the results and conclusions. Methods: Personas, interviews, use cases, and ethnographic observations were used to define the functional requirements of the system. Low fidelity prototypes were created for iterative and incremental evaluation with end-users. Field trials were also performed with the final system. The process followed a user centered design methodology defined for this project with the aim of building a useful, usable, and easy-to-use system. Results: Functional requirements of the system were produced as a result of the initial exploration phase. Building upon these, mock-ups for the BeatHealth system were created. The mobile application was iterated twice, with the second version of it achieving a rating of 75 when assessed by participants through the System Usability Scale (SUS). After another iteration field trials were performed and the mobile application was rated with an average 78.6 using SUS. Participants rated two website mock-ups, one for health professionals and another for end-users, as good except from minor issues related to visual design (e.g. font size), which were resolved in the final version. Conclusion: The high ratings obtained in the evaluation of the BeatHealth system demonstrate the benefit of applying a user centered design methodology which involves stakeholders from the very beginning. Other important lessons were learned through the process of design and development of the system, such as the importance of motivational aspects, the techniques which work best, and the extra care that has to be taken when evaluating non-functional mock-ups with end users.
Suggested Citation
Ainara Garzo & Paula Alexandra Silva & Nestor Garay-Vitoria & Erik Hernandez & Stephen Cullen & Valérie Cochen De Cock & Petra Ihalainen & Rudi Villing, 2018.
"Design and development of a gait training system for Parkinson’s disease,"
PLOS ONE, Public Library of Science, vol. 13(11), pages 1-30, November.
Handle:
RePEc:plo:pone00:0207136
DOI: 10.1371/journal.pone.0207136
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0207136. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.