Author
Listed:
- Nur Ahmadi
- Timothy G Constandinou
- Christos-Savvas Bouganis
Abstract
Neurons use sequences of action potentials (spikes) to convey information across neuronal networks. In neurophysiology experiments, information about external stimuli or behavioral tasks has been frequently characterized in term of neuronal firing rate. The firing rate is conventionally estimated by averaging spiking responses across multiple similar experiments (or trials). However, there exist a number of applications in neuroscience research that require firing rate to be estimated on a single trial basis. Estimating firing rate from a single trial is a challenging problem and current state-of-the-art methods do not perform well. To address this issue, we develop a new method for estimating firing rate based on a kernel smoothing technique that considers the bandwidth as a random variable with prior distribution that is adaptively updated under an empirical Bayesian framework. By carefully selecting the prior distribution together with Gaussian kernel function, an analytical expression can be achieved for the kernel bandwidth. We refer to the proposed method as Bayesian Adaptive Kernel Smoother (BAKS). We evaluate the performance of BAKS using synthetic spike train data generated by biologically plausible models: inhomogeneous Gamma (IG) and inhomogeneous inverse Gaussian (IIG). We also apply BAKS to real spike train data from non-human primate (NHP) motor and visual cortex. We benchmark the proposed method against established and previously reported methods. These include: optimized kernel smoother (OKS), variable kernel smoother (VKS), local polynomial fit (Locfit), and Bayesian adaptive regression splines (BARS). Results using both synthetic and real data demonstrate that the proposed method achieves better performance compared to competing methods. This suggests that the proposed method could be useful for understanding the encoding mechanism of neurons in cognitive-related tasks. The proposed method could also potentially improve the performance of brain-machine interface (BMI) decoder that relies on estimated firing rate as the input.
Suggested Citation
Nur Ahmadi & Timothy G Constandinou & Christos-Savvas Bouganis, 2018.
"Estimation of neuronal firing rate using Bayesian Adaptive Kernel Smoother (BAKS),"
PLOS ONE, Public Library of Science, vol. 13(11), pages 1-31, November.
Handle:
RePEc:plo:pone00:0206794
DOI: 10.1371/journal.pone.0206794
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0206794. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.