Author
Listed:
- Eman Z Dahmash
- Ali Al-khattawi
- Affiong Iyire
- Hamad Al-Yami
- Thomas J Dennison
- Afzal R Mohammed
Abstract
Quality by Design (QbD), a current trend employed to develop and optimise various critical pharmaceutical processes, is a systematic approach based on the ethos that quality should be designed into the product itself, not just end tested after manufacture. The present work details a step-wise application of QbD principles to optimise process parameters for production of particles with modified functionalities, using dry particle coating technology. Initial risk assessment identified speed, air pressure, processing time and batch size (independent factors) as having high-to-medium impact on the dry coating process. A design of experiments (DOE) using MODDE software employed a D-optimal design to determine the effect of variations in these factors on identified responses (content uniformity, dissolution rate, particle size and intensity of Fourier transform infrared (FTIR) C = O spectrum). Results showed that batch size had the most significant effect on dissolution rate, particle size and FTIR; with an increase in batch size enhancing dissolution rate, decreasing particle size (depicting absence of coated particles) and increasing the FTIR intensity. While content uniformity was affected by various interaction terms, with speed and batch size having the highest negative effect. Optimal design space for producing functionalised particles with optimal properties required maximum air pressure (40psi), low batch size (6g), speed between 850 to 1500 rpm and processing times between 15 to 60 minutes. The validity and predictive ability of the revised model demonstrated reliability for all experiments. Overall, QbD was demonstrated to provide an expedient and cost effective tool for developing and optimising processes in the pharmaceutical industry.
Suggested Citation
Eman Z Dahmash & Ali Al-khattawi & Affiong Iyire & Hamad Al-Yami & Thomas J Dennison & Afzal R Mohammed, 2018.
"Quality by Design (QbD) based process optimisation to develop functionalised particles with modified release properties using novel dry particle coating technique,"
PLOS ONE, Public Library of Science, vol. 13(11), pages 1-20, November.
Handle:
RePEc:plo:pone00:0206651
DOI: 10.1371/journal.pone.0206651
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0206651. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.