IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0206395.html
   My bibliography  Save this article

A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking

Author

Listed:
  • N Ezgi Wood
  • Andreas Doncic

Abstract

Live cell time-lapse microscopy, a widely-used technique to study gene expression and protein dynamics in single cells, relies on segmentation and tracking of individual cells for data generation. The potential of the data that can be extracted from this technique is limited by the inability to accurately segment a large number of cells from such microscopy images and track them over long periods of time. Existing segmentation and tracking algorithms either require additional dyes or markers specific to segmentation or they are highly specific to one imaging condition and cell morphology and/or necessitate manual correction. Here we introduce a fully automated, fast and robust segmentation and tracking algorithm for budding yeast that overcomes these limitations. Full automatization is achieved through a novel automated seeding method, which first generates coarse seeds, then automatically fine-tunes cell boundaries using these seeds and automatically corrects segmentation mistakes. Our algorithm can accurately segment and track individual yeast cells without any specific dye or biomarker. Moreover, we show how existing channels devoted to a biological process of interest can be used to improve the segmentation. The algorithm is versatile in that it accurately segments not only cycling cells with smooth elliptical shapes, but also cells with arbitrary morphologies (e.g. sporulating and pheromone treated cells). In addition, the algorithm is independent of the specific imaging method (bright-field/phase) and objective used (40X/63X/100X). We validate our algorithm’s performance on 9 cases each entailing a different imaging condition, objective magnification and/or cell morphology. Taken together, our algorithm presents a powerful segmentation and tracking tool that can be adapted to numerous budding yeast single-cell studies.

Suggested Citation

  • N Ezgi Wood & Andreas Doncic, 2019. "A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-28, March.
  • Handle: RePEc:plo:pone00:0206395
    DOI: 10.1371/journal.pone.0206395
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206395
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0206395&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0206395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas Henrion & Juan Andres Martinez & Vincent Vandenbroucke & Mathéo Delvenne & Samuel Telek & Andrew Zicler & Alexander Grünberger & Frank Delvigne, 2023. "Fitness cost associated with cell phenotypic switching drives population diversification dynamics and controllability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0206395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.