IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0206318.html
   My bibliography  Save this article

MATI: An efficient algorithm for influence maximization in social networks

Author

Listed:
  • Maria-Evgenia G Rossi
  • Bowen Shi
  • Nikolaos Tziortziotis
  • Fragkiskos D Malliaros
  • Christos Giatsidis
  • Michalis Vazirgiannis

Abstract

Influence maximization has attracted a lot of attention due to its numerous applications, including diffusion of social movements, the spread of news, viral marketing and outbreak of diseases. The objective is to discover a group of users that are able to maximize the spread of influence across a network. The greedy algorithm gives a solution to the Influence Maximization problem while having a good approximation ratio. Nevertheless it does not scale well for large scale datasets. In this paper, we propose Matrix Influence, MATI, an efficient algorithm that can be used under both the Linear Threshold and Independent Cascade diffusion models. MATI is based on the precalculation of the influence by taking advantage of the simple paths in the node’s neighborhood. An extensive empirical analysis has been performed on multiple real-world datasets showing that MATI has competitive performance when compared to other well-known algorithms with regards to running time and expected influence spread.

Suggested Citation

  • Maria-Evgenia G Rossi & Bowen Shi & Nikolaos Tziortziotis & Fragkiskos D Malliaros & Christos Giatsidis & Michalis Vazirgiannis, 2018. "MATI: An efficient algorithm for influence maximization in social networks," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-21, November.
  • Handle: RePEc:plo:pone00:0206318
    DOI: 10.1371/journal.pone.0206318
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206318
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0206318&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0206318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifei Zhou & Shaoyong Li & Yaping Liu, 2020. "Graph-based Method for App Usage Prediction with Attributed Heterogeneous Network Embedding," Future Internet, MDPI, vol. 12(3), pages 1-16, March.
    2. Nora Connor & Albert Barberán & Aaron Clauset, 2017. "Using null models to infer microbial co-occurrence networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    3. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    5. Bikramjit Das & Tiandong Wang & Gengling Dai, 2022. "Asymptotic Behavior of Common Connections in Sparse Random Networks," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2071-2092, September.
    6. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    7. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    8. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    9. Shugang Li & Ziming Wang & Beiyan Zhang & Boyi Zhu & Zhifang Wen & Zhaoxu Yu, 2022. "The Research of “Products Rapidly Attracting Users” Based on the Fully Integrated Link Prediction Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
    10. Chunjiang Liu & Yikun Han & Haiyun Xu & Shihan Yang & Kaidi Wang & Yongye Su, 2024. "A Community Detection and Graph-Neural-Network-Based Link Prediction Approach for Scientific Literature," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    11. Giorgos Stamatelatos & George Drosatos & Sotirios Gyftopoulos & Helen Briola & Pavlos S. Efraimidis, 2021. "Point-of-interest lists and their potential in recommendation systems," Information Technology & Tourism, Springer, vol. 23(2), pages 209-239, June.
    12. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    13. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    14. Kaufman, Miron & Diep, Hung T. & Kaufman, Sanda, 2019. "Sociophysics of intractable conflicts: Three-group dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 175-187.
    15. Belik, Ivan & Knudsen, Eirik Sjåholm, 2023. "Link on, Link off: Data-driven management of organizational networks for ambidexterity," Journal of Business Research, Elsevier, vol. 157(C).
    16. Giulio Biondi & Valentina Franzoni, 2020. "Discovering Correlation Indices for Link Prediction Using Differential Evolution," Mathematics, MDPI, vol. 8(11), pages 1-10, November.
    17. Yan Qi & Xin Zhang & Zhengyin Hu & Bin Xiang & Ran Zhang & Shu Fang, 2022. "Choosing the right collaboration partner for innovation: a framework based on topic analysis and link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5519-5550, September.
    18. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    19. Wang, Feifei & Dong, Jiaxin & Lu, Wanzhao & Xu, Shuo, 2023. "Collaboration prediction based on multilayer all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 17(1).
    20. Guan-Nan Wang & Hui Gao & Lian Chen & Dennis N A Mensah & Yan Fu, 2015. "Predicting Positive and Negative Relationships in Large Social Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0206318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.