IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0206091.html
   My bibliography  Save this article

Simplified procedure for efficient and unbiased population size estimation

Author

Listed:
  • Marcos Cruz
  • Javier González-Villa

Abstract

Population size estimation is relevant to social and ecological sciences. Exhaustive manual counting, the density method and automated computer vision are some of the estimation methods that are currently used. Some of these methods may work in concrete cases but they do not provide a fast, efficient and unbiased estimation in general. Recently, the CountEm method, based on systematic sampling with a grid of quadrats, was proposed. It offers an unbiased estimation that can be applied to any population. However, choosing suitable grid parameters is sometimes cumbersome. Here we define a more intuitive grid parametrization, using initial number of quadrats and sampling fraction. A crowd counting dataset with 51 images and their corresponding, manually annotated position point patterns, are used to analyze the variation of the coefficient of error with respect to different parameter choices. Our Monte Carlo resampling results show that the error depends on the sample size and the number of nonempty quadrats, but not on the size of the target population. A procedure to choose suitable parameter values is described, and the expected coefficients of error are given. Counting about 100 particles in 30 nonempty quadrats usually yields coefficients of error below 10%.

Suggested Citation

  • Marcos Cruz & Javier González-Villa, 2018. "Simplified procedure for efficient and unbiased population size estimation," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-11, October.
  • Handle: RePEc:plo:pone00:0206091
    DOI: 10.1371/journal.pone.0206091
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206091
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0206091&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0206091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Colin J Torney & Andrew P Dobson & Felix Borner & David J Lloyd-Jones & David Moyer & Honori T Maliti & Machoke Mwita & Howard Fredrick & Markus Borner & J Grant C Hopcraft, 2016. "Assessing Rotation-Invariant Feature Classification for Automated Wildebeest Population Counts," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zijing Wu & Ce Zhang & Xiaowei Gu & Isla Duporge & Lacey F. Hughey & Jared A. Stabach & Andrew K. Skidmore & J. Grant C. Hopcraft & Stephen J. Lee & Peter M. Atkinson & Douglas J. McCauley & Richard L, 2023. "Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0206091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.