Author
Listed:
- Fei Gao
- Meizhen Wang
- Xuejun Liu
- Ziran Wang
Abstract
Effective video monitoring systems require optimization of camera and road network coverage, to exploit fully the hardware and software solutions in smart city traffic applications. Monitoring requirements have grown increasingly diverse as scenes are becoming increasingly complex, thereby transforming the camera and road network coverage optimization issue into a nonlinear, high-dimension, and multi-objective problem. Previous research on this topic however, has focused on a single, specific optimization objective, which may result in invalid optimization results in actual applications. To extend this research, we propose a multi-objective scheduling optimization algorithm for a camera network that addresses the problem of directional road network coverage. In this solution, we incorporate an expanding parameter of main optical axes into particle swarm optimization algorithm. Our new strategy divides the range of main optical axes of all the cameras to control the scheduling number, achieving collaborative optimization of multiple objectives. In a simulated camera and road network, an experiment was designed for evaluating the effectiveness of the proposed method, comparing the distribution of optimization results with the global and local optimal solutions of the true value. A second experiment compared the distribution, performance and running time of the optimization results with different values of expanding parameter of main optical axes. A third experiment compared the performance of the optimization solutions with different values of camera parameters. The results showed that the proposed method can adapt to user application preference, and is effective and robust to schedule and allocate monitoring resources in different scenarios.
Suggested Citation
Fei Gao & Meizhen Wang & Xuejun Liu & Ziran Wang, 2018.
"A multi-objective scheduling optimization algorithm of a camera network for directional road network coverage,"
PLOS ONE, Public Library of Science, vol. 13(10), pages 1-22, October.
Handle:
RePEc:plo:pone00:0206038
DOI: 10.1371/journal.pone.0206038
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0206038. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.