Author
Listed:
- Samantha E M Munroe
- Jack Coates-Marnane
- Michele A Burford
- Brian Fry
Abstract
Biogeochemical maps of coastal regions can be used to identify important influences and inputs that define nearshore environments and biota. Biogeochemical tracers can also track animal movement and their diet, monitor human coastal development, and evaluate the condition of habitats and species. However, the beneficial applications of spatial biogeochemical analysis are hindered by a limited understanding of how tracer distribution is affected by different land and ocean–based influences. To help address these knowledge gaps, we determined the spatial trends of three stable isotopes (δ13C-carbon, δ15N-nitrogen, δ34S-sulfur) and 13 major and trace elements in an urbanized coastal embayment (Moreton Bay, Australia), as incorporated into the muscle tissue of a marine consumer, the eastern king prawn Melicertus plebejus. Results were used to identify unique biochemical regions within the bay and to discuss how spatial patterns in tracers could be used to indicate the relative importance of catchment, urban and offshore drivers in coastal bays. Discriminant analysis identified seven biogeochemical regions that were likely distinguished by variation in catchment, urban, and offshore input, and habitat type. δ13C and δ15N patterns suggested nearshore areas could be distinguished by increased sediment resuspension and higher wastewater inputs from catchments. High inshore lead (Pb) and copper (Cu) concentrations were likely the result of urban input. Arsenic (As) and cadmium (Cd) increased further from shore. This trend implied oceanic influences were a significant control over As and Cd bioavailability. Cobalt (Co) and rare earths were also used to differentiate some nearshore areas, but incongruent distribution patterns in Co suggested it may be less reliable. Overall, results indicated that δ15N, δ13C, Cd, Cu, Pb and rare earth elements were the most reliable tracers to differentiate nearshore and offshore environments, and catchment–based effects. We encourage future studies to consider using a similar multivariate approach in coastal spatial analysis, and to include unrelated tracers that reflect distinct coastal influences.
Suggested Citation
Samantha E M Munroe & Jack Coates-Marnane & Michele A Burford & Brian Fry, 2018.
"A benthic bioindicator reveals distinct land and ocean–Based influences in an urbanized coastal embayment,"
PLOS ONE, Public Library of Science, vol. 13(10), pages 1-28, October.
Handle:
RePEc:plo:pone00:0205408
DOI: 10.1371/journal.pone.0205408
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0205408. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.