Author
Listed:
- Hai-Tao Zheng
- Zuo-You Fu
- Jin-Yuan Chen
- Arun Kumar Sangaiah
- Yong Jiang
- Cong-Zhi Zhao
Abstract
With the development of large-scale knowledge bases (KBs), knowledge-based question answering (KBQA) has become an important research topic in recent years. The key task in KBQA is relation detection, which is the process of finding a compatible answer type for a natural language question and generating its corresponding structured query over a KB. However, existing systems often rely on shallow probabilistic methods, which are less expressive than deep semantic representation methods. In addition, since KBs are still far from complete, it is necessary to develop a new strategy that leverages unstructured resources outside of KBs. In this work, we propose a novel Question Answering method with Relation Detection and Textual Evidence (QARDTE). First, to address the semantic gap problem in relation detection, we use bidirectional long-short term memory networks with different levels of abstraction to better capture sentence structures. Our model achieves improved results with robustness against a wide diversity of expressions and questions with multiple relations. Moreover, to help compensate for the incompleteness of KBs, we utilize external unstructured text to extract additional supporting evidence and combine this evidence with relation information during the answer re-ranking process. In experiments on two well-known benchmarks, our system achieves F1 values of 0.558 (+2.8%) and 0.663 (+5.7%), which are state-of-the-art results that show significant improvement over existing KBQA systems.
Suggested Citation
Hai-Tao Zheng & Zuo-You Fu & Jin-Yuan Chen & Arun Kumar Sangaiah & Yong Jiang & Cong-Zhi Zhao, 2018.
"Novel knowledge-based system with relation detection and textual evidence for question answering research,"
PLOS ONE, Public Library of Science, vol. 13(10), pages 1-21, October.
Handle:
RePEc:plo:pone00:0205097
DOI: 10.1371/journal.pone.0205097
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0205097. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.