Author
Listed:
- Hu Wang
- Di Tian
- Chu Li
- Yan Tian
- Haoyu Zhou
Abstract
Leaf tooth can indicate several systematically informative features and is extremely useful for circumscribing fossil leaf taxa. Moreover, it can help discriminate species or even higher taxa accurately. Previous studies extract features that are not strictly defined in botany; therefore, a uniform standard to compare the accuracies of various feature extraction methods cannot be used. For efficient and automatic retrieval of plant leaves from a leaf database, in this study, we propose an image-based description and measurement of leaf teeth by referring to the leaf structure classification system in botany. First, image preprocessing is carried out to obtain a binary map of plant leaves. Then, corner detection based on the curvature scale-space (CSS) algorithm is used to extract the inflection point from the edges; next, the leaf tooth apex is extracted by screening the convex points; then, according to the definition of the leaf structure, the characteristics of the leaf teeth are described and measured in terms of number of orders of teeth, tooth spacing, number of teeth, sinus shape, and tooth shape. In this manner, data extracted from the algorithm can not only be used to classify plants, but also provide scientific and standardized data to understand the history of plant evolution. Finally, to verify the effectiveness of the extraction method, we used simple linear discriminant analysis and multiclass support vector machine to classify leaves. The results show that the proposed method achieves high accuracy that is superior to that of other methods.
Suggested Citation
Hu Wang & Di Tian & Chu Li & Yan Tian & Haoyu Zhou, 2019.
"Plant leaf tooth feature extraction,"
PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.
Handle:
RePEc:plo:pone00:0204714
DOI: 10.1371/journal.pone.0204714
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0204714. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.