IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0204644.html
   My bibliography  Save this article

Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach

Author

Listed:
  • Samuel Egieyeh
  • James Syce
  • Sarel F Malan
  • Alan Christoffels

Abstract

In view of the vast number of natural products with potential antiplasmodial bioactivity and cost of conducting antiplasmodial bioactivity assays, it may be judicious to learn from previous antiplasmodial bioassays and predict bioactivity of these natural products before experimental bioassays. This study set out to harness antimalarial bioactivity data of natural products to build accurate predictive models, utilizing classical machine learning approaches, which can find potential antimalarial hits from new sets of natural products. Classical machine learning approaches were used to build four classifier models (Naïve Bayesian, Voted Perceptron, Random Forest and Sequence Minimization Optimization of Support Vector Machines) from bioactivity data of natural products with in-vitro antiplasmodial activity (NAA) using a combination of the molecular descriptors and two-dimensional molecular fingerprints of the compounds. Models were evaluated with an independent test dataset. Possible chemical features associated with reported antimalarial activities of the compounds were also extracted. From the results, Random Forest (accuracy 82.81%, Kappa statistics 0.65 and Area under Receiver Operating Characteristics curve 0.91) and Sequential Minimization Optimization (accuracy 85.93%, Kappa statistics 0.72 and Area under Receiver Operating Characteristics curve 0.86) showed good predictive performance for the NAA dataset. The amine chemical group (specifically alkyl amines and basic nitrogen) was confirmed to be essential for antimalarial activity in active NAA dataset. This study built and evaluated classifier models that were used to predict the antiplasmodial bioactivity class (active or inactive) of a set of natural products from interBioScreen chemical library.

Suggested Citation

  • Samuel Egieyeh & James Syce & Sarel F Malan & Alan Christoffels, 2018. "Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
  • Handle: RePEc:plo:pone00:0204644
    DOI: 10.1371/journal.pone.0204644
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204644
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0204644&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0204644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikolaos Loukeris & Iordanis Eleftheriadis, 2015. "Further Higher Moments in Portfolio Selection and A Priori Detection of Bankruptcy, Under Multi‐layer Perceptron Neural Networks, Hybrid Neuro‐genetic MLPs, and the Voted Perceptron," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 20(4), pages 341-361, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
    2. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
    3. Stelios Bekiros & Nikolaos Loukeris & Nikolaos Matsatsinis & Frank Bezzina, 2019. "Customer Satisfaction Prediction in the Shipping Industry with Hybrid Meta-heuristic Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 647-667, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0204644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.