IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0204101.html
   My bibliography  Save this article

Impact of structural prior knowledge in SNV prediction: Towards causal variant finding in rare disease

Author

Listed:
  • Vasundhara Dehiya
  • Jaya Thomas
  • Lee Sael

Abstract

Can structural information of proteins generate essential features for predicting the deleterious effect of a single nucleotide variant (SNV) independent of the known existence of the SNV in diseases? In this work, we answer the question by examining the performance of features generated from prior knowledge with the goal towards determining the pathogenic effect of rare variants in rare disease. We take the approach of prioritizing SNV loci focusing on protein structure-based features. The proposed structure-based features are generated from geometric, physical, chemical, and functional properties of the variant loci and structural neighbors of the loci utilizing multiple homologous structures. The performance of the structure-based features alone, trained on 80% of HumVar-HumDiv combination (HumVD-train) and tested on 20% of HumVar-HumDiv (HumVD-test), ClinVar and ClinVar rare variant rare disease (ClinVarRVRD) datasets, showed high levels of discernibility in determining the SNV’s pathogenic or benign effects on patients. Combined structure- and sequence-based features generated from prior knowledge on a random forest model further improved the F scores to 0.84 (HumVD-test), 0.75 (ClinVar), and 0.75 (ClinVarRVRD). Including features based on the difference between wild-type in addition to the features based on loci information increased the F score slightly more to 0.90 (HumVD-test), 0.78 (ClinVar), and 0.76 (ClinVarRVRD). The empirical examination and high F scores of the results based on loci information alone suggest that location of SNV plays a primary role in determining functional impact of mutation and that structure-based features can help enhance the prediction performance.

Suggested Citation

  • Vasundhara Dehiya & Jaya Thomas & Lee Sael, 2018. "Impact of structural prior knowledge in SNV prediction: Towards causal variant finding in rare disease," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
  • Handle: RePEc:plo:pone00:0204101
    DOI: 10.1371/journal.pone.0204101
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204101
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0204101&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0204101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0204101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.