Author
Listed:
- Toshichika Iizumi
- Mizuki Kotoku
- Wonsik Kim
- Paul C West
- James S Gerber
- Molly E Brown
Abstract
Global agriculture is under pressure to meet increasing demand for food and agricultural products. There are several global assessments of crop yields, but we know little about the uncertainties of their key findings, as the assessments are driven by the single best yield dataset available when each assessment was conducted. Recently, two different spatially explicit, global, historical yield datasets, one based on agricultural census and the other largely based on satellite remote sensing, became available. Using these datasets, we compare the similarities and differences in global yield gaps, trend patterns, growth rates and changes in year-to-year variability. We analyzed maize, rice, wheat and soybean for the period of 1981 to 2008 at four resolutions (0.083°, 0.5°, 1.0° and 2.0°). Although estimates varied by dataset and resolution, the global mean annual growth rates of 1.7–1.8%, 1.5–1.7%, 1.1–1.3% and 1.4–1.6% for maize, rice, wheat and soybean, respectively, are not on track to double crop production by 2050. Potential production increases that can be attributed to closing yield gaps estimated from the satellite-based dataset are almost twice those estimated from the census-based dataset. Detected yield variability changes in rice and wheat are sensitive to the choice of dataset and resolution, but they are relatively robust for maize and soybean. Estimates of yield gaps and variability changes are more uncertain than those of yield trend patterns and growth rates. These tendencies are consistent across crops. Efforts to reduce uncertainties are required to gain a better understanding of historical change and crop production potential to better inform agricultural policies and investments.
Suggested Citation
Toshichika Iizumi & Mizuki Kotoku & Wonsik Kim & Paul C West & James S Gerber & Molly E Brown, 2018.
"Uncertainties of potentials and recent changes in global yields of major crops resulting from census- and satellite-based yield datasets at multiple resolutions,"
PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
Handle:
RePEc:plo:pone00:0203809
DOI: 10.1371/journal.pone.0203809
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0203809. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.