Author
Listed:
- Ayako Ikemura
- Ichiro Yuki
- Hiroaki Suzuki
- Tomoaki Suzuki
- Toshihiro Ishibashi
- Yukiko Abe
- Mitsuyoshi Urashima
- Chihebeddine Dahmani
- Yuichi Murayama
Abstract
Magnetic resonance image (MRI) is now widely used for imaging follow-up for post coiling brain aneurysms. However, the accuracy on the estimation of residual aneurysm, which is crucial for the retreatment planning, remains to be controversial. The purpose of this study is to evaluate a new post-processing technique that provides improved estimation of the residual aneurysm after coil embolization. One hundred aneurysms on 93 patients who underwent coil embolization for brain aneurysm were evaluated using the 1.5 Tesla time-resolved magnetic resonance angiography (TR-MRA) one year after the treatment. To minimize the inter-observer variability caused by the window level adjustment, an automatic post processing protocol using the full-width at half-maximum (FWHM) value was utilized. The result was then compared with that from the conventional cerebral angiography. Of the 97 aneurysms that underwent both TR-MRA and DSA, 23 (23.7%) showed residual neck / dome during follow-up. After window level adjustment, the size of the parent artery in the TR-MRA was consistent with that in the DSA. The reconstructed Volume Rendering images provided clear contours of the residual aneurysms and contributed to the understanding the configuration of residual aneurysm. The largest and the smallest diameter of the residual aneurysms was larger in the TR-MRA than in the DSA (8.05 vs. 7.72 mm, p = 0.0004; 4.99 vs. 4.19 mm, p = 0.007 respectively). The sensitivity, specificity, and positive and negative predictive values of TR-MRA compared to DSA were 100%, 97%, 73%, and 100%, respectively. Using the FWHM value to optimize the window level adjustment, the size of the residual component observed in the TR-MRA was larger compared to that in the DSA whereas the size of neck and the parent artery showed consistency between the two modalities. This image processing technique can be used as an effective screening tool for evaluating residual component in post-coiling brain aneurysms.
Suggested Citation
Ayako Ikemura & Ichiro Yuki & Hiroaki Suzuki & Tomoaki Suzuki & Toshihiro Ishibashi & Yukiko Abe & Mitsuyoshi Urashima & Chihebeddine Dahmani & Yuichi Murayama, 2018.
"Time-resolved magnetic resonance angiography (TR-MRA) for the evaluation of post coiling aneurysms; A quantitative analysis of the residual aneurysm using full-width at half-maximum (FWHM) value,"
PLOS ONE, Public Library of Science, vol. 13(9), pages 1-11, September.
Handle:
RePEc:plo:pone00:0203615
DOI: 10.1371/journal.pone.0203615
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0203615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.