IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0201243.html
   My bibliography  Save this article

Mapping individual voxel-wise morphological connectivity using wavelet transform of voxel-based morphology

Author

Listed:
  • Xun-Heng Wang
  • Yun Jiao
  • Lihua Li

Abstract

Mapping individual brain networks has drawn significant research interest in recent years. Most individual brain networks developed to date have been based on fMRI or diffusion MRI. Given recent concerns regarding confounding artifacts, various preprocessing steps are generally included in functional or structural brain networks. Notably, voxel-based morphometry (VBM) derived from anatomical MRI exhibits high signal-to-noise ratios and has been applied to individual interregional morphological networks. To the best of our knowledge, individual voxel-wise morphological networks remain unexplored. The goal of this research is twofold: to build novel metrics for individual voxel-wise morphological networks and to test the reliability of the proposed morphological connectivity. To this end, anatomical scans of a cohort of healthy subjects were obtained from a public database. The anatomical datasets were preprocessed and normalized to the standard brain space. For each individual, wavelet-transform was applied on the VBM measures to obtain voxel-wise hierarchical features. The voxel-wise morphological connectivity was computed based on the wavelet features. Reliable brain hubs were detected by the z-scores of degree centrality. High reliability was discovered by test-retest analysis. No effects of wavelet scale, network threshold or network type were found on hubs of group-level degree centrality. However, significant effects of wavelet scale, network threshold and network type were found on individual-level degree centrality. Significant effects of network threshold and network type were found on reliability of degree centrality. The results suggested that the voxel-wise morphological connectivity was reliable and exhibited a hub structure. Moreover, the voxel-wise morphological connectivity could reflect individual differences. In summary, individual voxel-wise wavelet-based features can probe morphological connectivity and may be beneficial for investigating the brain morphological connectomes.

Suggested Citation

  • Xun-Heng Wang & Yun Jiao & Lihua Li, 2018. "Mapping individual voxel-wise morphological connectivity using wavelet transform of voxel-based morphology," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-16, July.
  • Handle: RePEc:plo:pone00:0201243
    DOI: 10.1371/journal.pone.0201243
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201243
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0201243&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0201243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gabriele Lohmann & Daniel S Margulies & Annette Horstmann & Burkhard Pleger & Joeran Lepsien & Dirk Goldhahn & Haiko Schloegl & Michael Stumvoll & Arno Villringer & Robert Turner, 2010. "Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolei Zhang & Weijun Pan, 2019. "Exon prediction based on multiscale products of a genomic-inspired multiscale bilateral filtering," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Negar & Pei, Yulong & Pechenizkiy, Mykola, 2019. "Effect of linear mixing in EEG on synchronization and complex network measures studied using the Kuramoto model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 289-308.
    2. Jiancheng Guan & Yan Yan & Jingjing Zhang, 2015. "How do collaborative features affect scientific output? Evidences from wind power field," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 333-355, January.
    3. Saikou Y. Diallo & Christopher J. Lynch & Ross Gore & Jose J. Padilla, 2016. "Identifying key papers within a journal via network centrality measures," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1005-1020, June.
    4. Pradhan, Priodyuti & C.U., Angeliya & Jalan, Sarika, 2020. "Principal eigenvector localization and centrality in networks: Revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    5. Gutiérrez, Caracé & Gancio, Juan & Cabeza, Cecilia & Rubido, Nicolás, 2021. "Finding the resistance distance and eigenvector centrality from the network’s eigenvalues," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    6. Óskarsdóttir, María & Bravo, Cristián, 2021. "Multilayer network analysis for improved credit risk prediction," Omega, Elsevier, vol. 105(C).
    7. Yufei Liu & Dechang Pi & Lin Cui, 2017. "Mining Community-Level Influence in Microblogging Network: A Case Study on Sina Weibo," Complexity, Hindawi, vol. 2017, pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0201243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.