Author
Listed:
- Bumhee Yang
- Byung Woo Jhun
- Sun Hye Shin
- Byeong-Ho Jeong
- Sang-Won Um
- Jae Il Zo
- Ho Yun Lee
- Insoek Sohn
- Hojoong Kim
- O Jung Kwon
- Kyungjong Lee
Abstract
Objective: Four commonly used clinical models for predicting the probability of malignancy in pulmonary nodules were compared. While three of the models (Mayo Clinic, Veterans Association [VA], and Brock University) are based on clinical and computed tomography (CT) characteristics, one model (Herder) additionally includes the 18F-fluorodeoxyglucose (FDG) uptake value among the positron emission tomography (PET) characteristics. This study aimed to compare the predictive power of these four models in the context of a population drawn from a single center in an endemic area for tuberculosis in Korea. Methods: A retrospective analysis of 242 pathologically confirmed nodules (4–30 mm in diameter) in 242 patients from January 2015 to December 2015 was performed. The area under the receiver operating characteristic curve (AUC) was used to assess the predictive performance with respect to malignancy. Results: Of 242 nodules, 187 (77.2%) were malignant and 55 (22.8%) were benign, with tuberculosis granuloma being the most common type of benign nodule (23/55). PET was performed for 227 nodules (93.8%). The Mayo, VA, and Brock models showed similar predictive performance for malignant nodules (AUC: 0.6145, 0.6042 and 0.6820, respectively). The performance of the Herder model (AUC: 0.5567) was not significantly different from that of the Mayo (vs. Herder, p = 0.576) or VA models (vs. Herder, p = 0.999), and there were no differences among the three models in determining the probability of malignancy of pulmonary nodules. However, compared with the Brock model, the Herder model showed a significantly lower ability to predict malignancy (adjusted p = 0.0132). Conclusions: In our study, the Herder model including the 18FDG uptake value did not perform better than the other models in predicting malignant nodules, suggesting the limited utility of adding PET/CT data to models predicting malignancy in populations within endemic areas for benign inflammatory nodules, such as tuberculosis.
Suggested Citation
Bumhee Yang & Byung Woo Jhun & Sun Hye Shin & Byeong-Ho Jeong & Sang-Won Um & Jae Il Zo & Ho Yun Lee & Insoek Sohn & Hojoong Kim & O Jung Kwon & Kyungjong Lee, 2018.
"Comparison of four models predicting the malignancy of pulmonary nodules: A single-center study of Korean adults,"
PLOS ONE, Public Library of Science, vol. 13(7), pages 1-10, July.
Handle:
RePEc:plo:pone00:0201242
DOI: 10.1371/journal.pone.0201242
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0201242. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.