IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0200915.html
   My bibliography  Save this article

Risk-adjusted monitoring of surgical performance

Author

Listed:
  • Jianbo Li
  • Jiancheng Jiang
  • Xuejun Jiang
  • Lin Liu

Abstract

We propose a nonparametric risk-adjusted cumulative sum chart to monitor surgical outcomes for patients with different risks of post-operative mortality due to risk factors that exist before the surgery. Using varying-coefficient logistic regression models, we accomplish the risk adjustment. Unknown coefficient functions are estimated by global polynomial spline approximation based on the maximum likelihood principle. We suggest a bisection minimization approach and a bootstrap method to determine the chart testing limit value. Compared with the previous (parametric) risk-adjusted cumulative sum chart, a major advantage of our method is that the morality rate can be modeled more flexibly by related covariates, which significantly enhances the monitoring efficiency. Simulations demonstrate nice performance of our proposed procedure. An application to a UK cardiac surgery dataset illustrates the use of our methodology.

Suggested Citation

  • Jianbo Li & Jiancheng Jiang & Xuejun Jiang & Lin Liu, 2018. "Risk-adjusted monitoring of surgical performance," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-13, August.
  • Handle: RePEc:plo:pone00:0200915
    DOI: 10.1371/journal.pone.0200915
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200915
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0200915&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0200915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. O. Grigg & V. Farewell, 2004. "An overview of risk‐adjusted charts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 523-539, August.
    2. Li Zeng, 2016. "Risk-Adjusted Performance Monitoring in Healthcare Quality Control," Springer Series in Reliability Engineering, in: Hoang Pham (ed.), Quality and Reliability Management and Its Applications, pages 27-45, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan Assareh & Kerrie Mengersen, 2012. "Change Point Estimation in Monitoring Survival Time," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
    2. Sotirios Bersimis & Athanasios Sachlas & Ross Sparks, 2017. "Performance Monitoring and Competence Assessment in Health Services," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1169-1190, December.
    3. Axel Gandy & Jan Terje Kvaløy, 2013. "Guaranteed Conditional Performance of Control Charts via Bootstrap Methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 647-668, December.
    4. Isabel González & Ismael Sánchez, 2009. "On‐line evaluation of the stability of an inspection process," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 719-736, November.
    5. Nataliya Chukhrova & Arne Johannssen, 2020. "Monitoring of high-yield and periodical processes in health care," Health Care Management Science, Springer, vol. 23(4), pages 619-639, December.
    6. Athanasios Sachlas & Sotirios Bersimis & Stelios Psarakis, 2019. "Risk-Adjusted Control Charts: Theory, Methods, and Applications in Health," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 630-658, December.
    7. Kolb, Aaron M., 2019. "Strategic real options," Journal of Economic Theory, Elsevier, vol. 183(C), pages 344-383.
    8. Y. Samimi & A. Aghaie, 2010. "Monitoring heterogeneous serially correlated usage behavior in subscription-based services," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(10), pages 1761-1777.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0200915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.