IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0200196.html
   My bibliography  Save this article

The quantitative measure and statistical distribution of fame

Author

Listed:
  • Edward D Ramirez
  • Stephen J Hagen

Abstract

Fame and celebrity play an ever-increasing role in our culture. However, despite the cultural and economic importance of fame and its gradations, there exists no consensus method for quantifying the fame of an individual, or of comparing that of two individuals. We argue that, even if fame is difficult to measure with precision, one may develop useful metrics for fame that correlate well with intuition and that remain reasonably stable over time. Using datasets of recently deceased individuals who were highly renowned, we have evaluated several internet-based methods for quantifying fame. We find that some widely-used internet-derived metrics, such as search engine results, correlate poorly with human subject judgments of fame. However other metrics exist that agree well with human judgments and appear to offer workable, easily accessible measures of fame. Using such a metric we perform a preliminary investigation of the statistical distribution of fame, which has some of the power law character seen in other natural and social phenomena such as landslides and market crashes. In order to demonstrate how such findings can generate quantitative insight into celebrity culture, we assess some folk ideas regarding the frequency distribution and apparent clustering of celebrity deaths.

Suggested Citation

  • Edward D Ramirez & Stephen J Hagen, 2018. "The quantitative measure and statistical distribution of fame," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-16, July.
  • Handle: RePEc:plo:pone00:0200196
    DOI: 10.1371/journal.pone.0200196
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200196
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0200196&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0200196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Yinghong & He, Jiaoyang & Yu, Qinglin, 2019. "Modeling on social popularity and achievement: A case study on table tennis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 235-245.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0200196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.