IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0199768.html
   My bibliography  Save this article

Mining patterns of comorbidity evolution in patients with multiple chronic conditions using unsupervised multi-level temporal Bayesian network

Author

Listed:
  • Syed Hasib Akhter Faruqui
  • Adel Alaeddini
  • Carlos A Jaramillo
  • Jennifer S Potter
  • Mary Jo Pugh

Abstract

Over the past few decades, the rise of multiple chronic conditions has become a major concern for clinicians. However, it is still not known precisely how multiple chronic conditions emerge among patients. We propose an unsupervised multi-level temporal Bayesian network to provide a compact representation of the relationship among emergence of multiple chronic conditions and patient level risk factors over time. To improve the efficiency of the learning process, we use an extension of maximum weight spanning tree algorithm and greedy search algorithm to study the structure of the proposed network in three stages, starting with learning the inter-relationship of comorbidities within each year, followed by learning the intra-relationship of comorbidity emergence between consecutive years, and finally learning the hierarchical relationship of comorbidities and patient level risk factors. We also use a longest path algorithm to identify the most likely sequence of comorbidities emerging from and/or leading to specific chronic conditions. Using a de-identified dataset of more than 250,000 patients receiving care from the U.S. Department of Veterans Affairs for a period of five years, we compare the performance of the proposed unsupervised Bayesian network in comparison with those of Bayesian networks developed based on supervised and semi-supervised learning approaches, as well as multivariate probit regression, multinomial logistic regression, and latent regression Markov mixture clustering focusing on traumatic brain injury (TBI), post-traumatic stress disorder (PTSD), depression (Depr), substance abuse (SuAb), and back pain (BaPa). Our findings show that the unsupervised approach has noticeably accurate predictive performance that is comparable to the best performing semi-supervised and the second-best performing supervised approaches. These findings also revealed that the unsupervised approach has improved performance over multivariate probit regression, multinomial logistic regression, and latent regression Markov mixture clustering.

Suggested Citation

  • Syed Hasib Akhter Faruqui & Adel Alaeddini & Carlos A Jaramillo & Jennifer S Potter & Mary Jo Pugh, 2018. "Mining patterns of comorbidity evolution in patients with multiple chronic conditions using unsupervised multi-level temporal Bayesian network," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-22, July.
  • Handle: RePEc:plo:pone00:0199768
    DOI: 10.1371/journal.pone.0199768
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199768
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0199768&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0199768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mandana Rezaeiahari & Clare C Brown & Mir M Ali & Jyotishka Datta & J Mick Tilford, 2021. "Understanding racial disparities in severe maternal morbidity using Bayesian network analysis," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0199768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.