Author
Listed:
- Kenan Niu
- Jasper Homminga
- Victor I Sluiter
- André Sprengers
- Nico Verdonschot
Abstract
Purpose: A fast and accurate intraoperative registration method is important for Computer-Aided Orthopedic Surgery (CAOS). A-mode ultrasound (US) is able to acquire bone surface data in a non-invasive manner. To utilize A-mode US in CAOS, a suitable registration algorithm is necessary with a small number of registration points and the presence of measurement errors. Therefore, we investigated the effects of (1) the number of registration points and (2) the Ultrasound Point Localization Error (UPLE) on the overall registration accuracy. Methods: We proposed a new registration method (ICP-PS), including the Iterative Closest Points (ICP) algorithm and a Perturbation Search algorithm. This method enables to avoid getting stuck in the local minimum of ICP iterations and to find the adjacent global minimum. This registration method was subsequently validated in a numerical simulation and a cadaveric experiment using a 3D-tracked A-mode US system. Results: The results showed that ICP-PS outperformed the standard ICP algorithm. The registration accuracy improved with the addition of ultrasound registration points. In the numerical simulation, for 25 sample points with zero UPLE, the averaged registration error of ICP-PS reached 0.25 mm, while 1.71 mm for ICP, decreasing by 85.38%. In the cadaver experiment, using 25 registration points, ICP-PS achieved an RMSE of 2.81 mm relative to 5.84 mm for the ICP, decreasing by 51.88%. Conclusions: The simulation approach provided a well-defined framework for estimating the necessary number of ultrasound registration points and acceptable level of UPLE for a given required level of accuracy for intraoperative registration in CAOS. ICP-PS method is suitable for A-mode US based intraoperative registration. This study would facilitate the application of A-mode US probe in registering the point cloud to a known shape model, which also has the potential for accurately estimating bone position and orientation for skeletal motion tracking and surgical navigation.
Suggested Citation
Kenan Niu & Jasper Homminga & Victor I Sluiter & André Sprengers & Nico Verdonschot, 2018.
"Feasibility of A-mode ultrasound based intraoperative registration in computer-aided orthopedic surgery: A simulation and experimental study,"
PLOS ONE, Public Library of Science, vol. 13(6), pages 1-15, June.
Handle:
RePEc:plo:pone00:0199136
DOI: 10.1371/journal.pone.0199136
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0199136. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.