Author
Listed:
- Nicolas Houy
- François Le Grand
Abstract
We determine an optimal protocol for temozolomide using population variability and dynamic optimization techniques inspired by artificial intelligence. We use a Pharmacokinetics/Pharmacodynamics (PK/PD) model based on Faivre and coauthors (Faivre, et al., 2013) for the pharmacokinetics of temozolomide, as well as the pharmacodynamics of its efficacy. For toxicity, which is measured by the nadir of the normalized absolute neutrophil count, we formalize the myelosuppression effect of temozolomide with the physiological model of Panetta and coauthors (Panetta, et al., 2003). We apply the model to a population with variability as given in Panetta and coauthors (Panetta, et al., 2003). Our optimization algorithm is a variant in the class of Monte-Carlo tree search algorithms. We do not impose periodicity constraint on our solution. We set the objective of tumor size minimization while not allowing more severe toxicity levels than the standard Maximum Tolerated Dose (MTD) regimen. The protocol we propose achieves higher efficacy in the sense that –compared to the usual MTD regimen– it divides the tumor size by approximately 7.66 after 336 days –the 95% confidence interval being [7.36–7.97]. The toxicity is similar to MTD. Overall, our protocol, obtained with a very flexible method, gives significant results for the present case of temozolomide and calls for further research mixing operational research or artificial intelligence and clinical research in oncology.
Suggested Citation
Nicolas Houy & François Le Grand, 2018.
"Optimal dynamic regimens with artificial intelligence: The case of temozolomide,"
PLOS ONE, Public Library of Science, vol. 13(6), pages 1-15, June.
Handle:
RePEc:plo:pone00:0199076
DOI: 10.1371/journal.pone.0199076
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0199076. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.