Author
Listed:
- Hsieh Fushing
- Shan-Yu Liu
- Yin-Chen Hsieh
- Brenda McCowan
Abstract
Data generated from a system of interest typically consists of measurements on many covariate features and possibly multiple response features across all subjects in a designated ensemble. Such data is naturally represented by one response-matrix against one covariate-matrix. A matrix lattice is an advantageous platform for simultaneously accommodating heterogeneous data types: continuous, discrete and categorical, and exploring hidden dependency among/between features and subjects. After each feature being individually renormalized with respect to its own histogram, the categorical version of mutual conditional entropy is evaluated for all pairs of response and covariate features according to the combinatorial information theory. Then, by applying Data Could Geometry (DCG) algorithmic computations on such a mutual conditional entropy matrix, multiple synergistic feature-groups are partitioned. Distinct synergistic feature-groups embrace distinct structures of dependency. The explicit details of dependency among members of synergistic features are seen through mutliscale compositions of blocks computed by a computing paradigm called Data Mechanics. We then propose a categorical pattern matching approach to establish a directed associative linkage: from the patterned response dependency to serial structured covariate dependency. The graphic display of such a directed associative linkage is termed an information flow and the degrees of association are evaluated via tree-to-tree mutual conditional entropy. This new universal way of discovering system knowledge is illustrated through five data sets. In each case, the emergent visible heterogeneity is an organization of discovered knowledge.
Suggested Citation
Hsieh Fushing & Shan-Yu Liu & Yin-Chen Hsieh & Brenda McCowan, 2018.
"From patterned response dependency to structured covariate dependency: Entropy based categorical-pattern-matching,"
PLOS ONE, Public Library of Science, vol. 13(6), pages 1-28, June.
Handle:
RePEc:plo:pone00:0198253
DOI: 10.1371/journal.pone.0198253
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0198253. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.