IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0197595.html
   My bibliography  Save this article

Beyond degree and betweenness centrality: Alternative topological measures to predict viral targets

Author

Listed:
  • Prajwal Devkota
  • Matt C Danzi
  • Stefan Wuchty

Abstract

The availability of large-scale screens of host-virus interaction interfaces enabled the topological analysis of viral protein targets of the host. In particular, host proteins that bind viral proteins are generally hubs and proteins with high betweenness centrality. Recently, other topological measures were introduced that a virus may tap to infect a host cell. Utilizing experimentally determined sets of human protein targets from Herpes, Hepatitis, HIV and Influenza, we pooled molecular interactions between proteins from different pathway databases. Apart from a protein’s degree and betweenness centrality, we considered a protein’s pathway participation, ability to topologically control a network and protein PageRank index. In particular, we found that proteins with increasing values of such measures tend to accumulate viral targets and distinguish viral targets from non-targets. Furthermore, all such topological measures strongly correlate with the occurrence of a given protein in different pathways. Building a random forest classifier that is based on such topological measures, we found that protein PageRank index had the highest impact on the classification of viral (non-)targets while proteins' ability to topologically control an interaction network played the least important role.

Suggested Citation

  • Prajwal Devkota & Matt C Danzi & Stefan Wuchty, 2018. "Beyond degree and betweenness centrality: Alternative topological measures to predict viral targets," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-14, May.
  • Handle: RePEc:plo:pone00:0197595
    DOI: 10.1371/journal.pone.0197595
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197595
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0197595&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0197595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Douglas J. LaCount & Marissa Vignali & Rakesh Chettier & Amit Phansalkar & Russell Bell & Jay R. Hesselberth & Lori W. Schoenfeld & Irene Ota & Sudhir Sahasrabudhe & Cornelia Kurschner & Stanley Field, 2005. "A protein interaction network of the malaria parasite Plasmodium falciparum," Nature, Nature, vol. 438(7064), pages 103-107, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis P Fernandes & Alessia Annibale & Jens Kleinjung & Anthony C C Coolen & Franca Fraternali, 2010. "Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-14, August.
    2. Alalwan, Najlaa & Arenas, Alex & Estrada, Ernesto, 2019. "“Melting” of complex networks. A mathematical model of complex networks resilience to external stress," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0197595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.