IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0197316.html
   My bibliography  Save this article

Sensory integration of a light touch reference in human standing balance

Author

Listed:
  • Lorenz Assländer
  • Craig P Smith
  • Raymond F Reynolds

Abstract

In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting.

Suggested Citation

  • Lorenz Assländer & Craig P Smith & Raymond F Reynolds, 2018. "Sensory integration of a light touch reference in human standing balance," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0197316
    DOI: 10.1371/journal.pone.0197316
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197316
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0197316&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0197316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0197316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.