Author
Listed:
- Lucia Bizovska
- Zdenek Svoboda
- Miroslav Janura
- Maria Cristina Bisi
- Nicolas Vuillerme
Abstract
Computing the local dynamic stability using accelerometer data from inertial sensors has recently been proposed as a gait measure which may be able to identify elderly people at fall risk. However, the assumptions supporting this potential were concluded as most studies implement a retrospective fall history observation. The aim of this study was to evaluate the potential of local dynamic stability for fall risk prediction in a cohort of subjects over the age of 60 years using a prospective fall occurrence observation. A total of 131 elderly subjects voluntarily participated in this study. The baseline measurement included gait stability assessment using inertial sensors and clinical examination by Tinetti Balance Assessment Tool. After the baseline measurement, subjects were observed for a period of one year for fall occurrence. Our results demonstrated poor multiple falls predictive ability of trunk local dynamic stability (AUC = 0.673). The predictive ability improved when the local dynamic stability was combined with clinical measures, a combination of trunk medial-lateral local dynamic stability and Tinetti total score being the best predictor (AUC = 0.755). Together, the present findings suggest that the medial-lateral local dynamic stability during gait combined with a clinical score is a potential fall risk assessment measure in the elderly population.
Suggested Citation
Lucia Bizovska & Zdenek Svoboda & Miroslav Janura & Maria Cristina Bisi & Nicolas Vuillerme, 2018.
"Local dynamic stability during gait for predicting falls in elderly people: A one-year prospective study,"
PLOS ONE, Public Library of Science, vol. 13(5), pages 1-11, May.
Handle:
RePEc:plo:pone00:0197091
DOI: 10.1371/journal.pone.0197091
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0197091. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.