IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0196456.html
   My bibliography  Save this article

Efficient estimation of Pareto model: Some modified percentile estimators

Author

Listed:
  • Sajjad Haider Bhatti
  • Shahzad Hussain
  • Tanvir Ahmad
  • Muhammad Aslam
  • Muhammad Aftab
  • Muhammad Ali Raza

Abstract

The article proposes three modified percentile estimators for parameter estimation of the Pareto distribution. These modifications are based on median, geometric mean and expectation of empirical cumulative distribution function of first-order statistic. The proposed modified estimators are compared with traditional percentile estimators through a Monte Carlo simulation for different parameter combinations with varying sample sizes. Performance of different estimators is assessed in terms of total mean square error and total relative deviation. It is determined that modified percentile estimator based on expectation of empirical cumulative distribution function of first-order statistic provides efficient and precise parameter estimates compared to other estimators considered. The simulation results were further confirmed using two real life examples where maximum likelihood and moment estimators were also considered.

Suggested Citation

  • Sajjad Haider Bhatti & Shahzad Hussain & Tanvir Ahmad & Muhammad Aslam & Muhammad Aftab & Muhammad Ali Raza, 2018. "Efficient estimation of Pareto model: Some modified percentile estimators," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-15, May.
  • Handle: RePEc:plo:pone00:0196456
    DOI: 10.1371/journal.pone.0196456
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196456
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0196456&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0196456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahzad Hussain & Sajjad Haider Bhatti & Tanvir Ahmad & Muhammad Ahmed Shehzad, 2021. "Parameter estimation of the Pareto distribution using least squares approaches blended with different rank methods and its applications in modeling natural catastrophes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1693-1708, June.
    2. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Trück & Jiwook Jang, 2023. "Cyber loss model risk translates to premium mispricing and risk sensitivity," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 372-433, April.
    3. Frederico Caeiro & Ayana Mateus, 2023. "A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
    4. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang, 2022. "Cyber Loss Model Risk Translates to Premium Mispricing and Risk Sensitivity," Papers 2202.10588, arXiv.org, revised Mar 2023.
    5. Silius M. Vandeskog & Thordis L. Thorarinsdottir & Ingelin Steinsland & Finn Lindgren, 2022. "Quantile based modeling of diurnal temperature range with the five‐parameter lambda distribution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0196456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.