Author
Listed:
- Mridul K Thomas
- Simone Fontana
- Marta Reyes
- Francesco Pomati
Abstract
Scanning flow cytometry (SFCM) is characterized by the measurement of time-resolved pulses of fluorescence and scattering, enabling the high-throughput quantification of phytoplankton morphology and pigmentation. Quantifying variation at the single cell and colony level improves our ability to understand dynamics in natural communities. Automated high-frequency monitoring of these communities is presently limited by the absence of repeatable, rapid protocols to analyse SFCM datasets, where images of individual particles are not available. Here we demonstrate a repeatable, semi-automated method to (1) rapidly clean SFCM data from a phytoplankton community by removing signals that do not belong to live phytoplankton cells, (2) classify individual cells into trait clusters that correspond to functional groups, and (3) quantify the biovolumes of individual cells, the total biovolume of the whole community and the total biovolumes of the major functional groups. Our method involves the development of training datasets using lab cultures, the use of an unsupervised clustering algorithm to identify trait clusters, and machine learning tools (random forests) to (1) evaluate variable importance, (2) classify data points, and (3) estimate biovolumes of individual cells. We provide example datasets and R code for our analytical approach that can be adapted for analysis of datasets from other flow cytometers or scanning flow cytometers.
Suggested Citation
Mridul K Thomas & Simone Fontana & Marta Reyes & Francesco Pomati, 2018.
"Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering,"
PLOS ONE, Public Library of Science, vol. 13(5), pages 1-22, May.
Handle:
RePEc:plo:pone00:0196225
DOI: 10.1371/journal.pone.0196225
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0196225. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.