Author
Listed:
- Michael D Tomasini
- Daniel S Johnson
- Joshua S Mincer
- Sanford M Simon
Abstract
We report a computational model for the assembly of HIV-1 Gag into immature viral particles at the plasma membrane. To reproduce experimental structural and kinetic properties of assembly, a process occurring on the order of minutes, a coarse-grained representation consisting of a single particle per Gag molecule is developed. The model uses information relating the functional interfaces implicated in Gag assembly, results from cryo electron-tomography, and biophysical measurements from fluorescence microscopy, such as the dynamics of Gag assembly at single virions. These experimental constraints eliminated many classes of potential interactions, and narrowed the model to a single interaction scheme with two non-equivalent interfaces acting to form Gags into a hexamer, and a third interface acting to link hexamers together. This model was able to form into a hexameric structure with correct lattice spacing and reproduced biologically relevant growth rates. We explored the effect of genomic RNA seeding punctum growth, finding that RNA may be a factor in locally concentrating Gags to initiate assembly. The simulation results infer that completion of assembly cannot be governed simply by Gag binding kinetics. However the addition of membrane curvature suggests that budding of the virion from the plasma membrane could factor into slowing incorporation of Gag at an assembly site resulting in virions of the same size and number of Gag molecules independent of Gag concentration or the time taken to complete assembly. To corroborate the results of our simulation model, we developed an analytic model for Gag assembly finding good agreement with the simulation results.
Suggested Citation
Michael D Tomasini & Daniel S Johnson & Joshua S Mincer & Sanford M Simon, 2018.
"Modeling the dynamics and kinetics of HIV-1 Gag during viral assembly,"
PLOS ONE, Public Library of Science, vol. 13(4), pages 1-31, April.
Handle:
RePEc:plo:pone00:0196133
DOI: 10.1371/journal.pone.0196133
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0196133. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.