IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0195939.html
   My bibliography  Save this article

Fusing metabolomics data sets with heterogeneous measurement errors

Author

Listed:
  • Sandra Waaijenborg
  • Oksana Korobko
  • Ko Willems van Dijk
  • Mirjam Lips
  • Thomas Hankemeier
  • Tom F Wilderjans
  • Age K Smilde
  • Johan A Westerhuis

Abstract

Combining different metabolomics platforms can contribute significantly to the discovery of complementary processes expressed under different conditions. However, analysing the fused data might be hampered by the difference in their quality. In metabolomics data, one often observes that measurement errors increase with increasing measurement level and that different platforms have different measurement error variance. In this paper we compare three different approaches to correct for the measurement error heterogeneity, by transformation of the raw data, by weighted filtering before modelling and by a modelling approach using a weighted sum of residuals. For an illustration of these different approaches we analyse data from healthy obese and diabetic obese individuals, obtained from two metabolomics platforms. Concluding, the filtering and modelling approaches that both estimate a model of the measurement error did not outperform the data transformation approaches for this application. This is probably due to the limited difference in measurement error and the fact that estimation of measurement error models is unstable due to the small number of repeats available. A transformation of the data improves the classification of the two groups.

Suggested Citation

  • Sandra Waaijenborg & Oksana Korobko & Ko Willems van Dijk & Mirjam Lips & Thomas Hankemeier & Tom F Wilderjans & Age K Smilde & Johan A Westerhuis, 2018. "Fusing metabolomics data sets with heterogeneous measurement errors," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-19, April.
  • Handle: RePEc:plo:pone00:0195939
    DOI: 10.1371/journal.pone.0195939
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195939
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0195939&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0195939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marieke Timmerman & Henk Kiers, 2003. "Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 105-121, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Wilderjans & E. Ceulemans & I. Mechelen, 2012. "The SIMCLAS Model: Simultaneous Analysis of Coupled Binary Data Matrices with Noise Heterogeneity Between and Within Data Blocks," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 724-740, October.
    2. Fei Gu & Hao Wu, 2016. "Raw Data Maximum Likelihood Estimation for Common Principal Component Models: A State Space Approach," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 751-773, September.
    3. Ginette Lafit & Kristof Meers & Eva Ceulemans, 2022. "A Systematic Study into the Factors that Affect the Predictive Accuracy of Multilevel VAR(1) Models," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 432-476, June.
    4. Pietro Lovaglio & Giorgio Vittadini, 2013. "Multilevel dimensionality-reduction methods," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 183-207, June.
    5. Kim De Roover & Eva Ceulemans & Marieke Timmerman & John Nezlek & Patrick Onghena, 2013. "Modeling Differences in the Dimensionality of Multiblock Data by Means of Clusterwise Simultaneous Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 648-668, October.
    6. Nathaniel Helwig, 2013. "The Special Sign Indeterminacy of the Direct-Fitting Parafac2 Model: Some Implications, Cautions, and Recommendations for Simultaneous Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 725-739, October.
    7. Alwin Stegeman, 2018. "Simultaneous Component Analysis by Means of Tucker3," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 21-47, March.
    8. Tenenhaus, Arthur & Tenenhaus, Michel, 2014. "Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis," European Journal of Operational Research, Elsevier, vol. 238(2), pages 391-403.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0195939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.