IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0195618.html
   My bibliography  Save this article

Approximating net interactions among rigid domains

Author

Listed:
  • Pouya Tavousi

Abstract

Many physical simulations aim at evaluating the net interaction between two rigid bodies, resulting from the cumulative effect of pairwise interactions between their constituents. This is manifested particularly in biomolecular applications such as hierarchical protein folding instances where the interaction between almost rigid domains directly influences the folding pathway, the interaction between macromolecules for drug design purposes, self-assembly of nanoparticles for drug design and drug delivery, and design of smart materials and bio-sensors. In general, the brute force approach requires quadratic (in terms of the number of particles) number of pairwise evaluation operations for any relative pose of the two bodies, unless simplifying assumptions lead to a collapse of the computational complexity. We propose to approximate the pairwise interaction function using a linear predictor function, in which the basis functions have separated forms, i.e. the variables that describe local geometries of the two rigid bodies and the ones that reflect the relative pose between them are split in each basis function. Doing so replaces the quadratic number of interaction evaluations for each relative pose with a one-time quadratic computation of a set of characteristic parameters at a preprocessing step, plus constant number of pose function evaluations at each pose, where this constant is determined by the required accuracy of approximation as well as the efficiency of the used approximation method. We will show that the standard deviation of the error for the net interaction is linearly (in terms of number of particles) proportional to the regression error, if the regression errors are from a normal distribution. Our results show that proper balance of the tradeoff between accuracy and speed-up yields an approximation which is computationally superior to other existing methods while maintaining reasonable precision.

Suggested Citation

  • Pouya Tavousi, 2018. "Approximating net interactions among rigid domains," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-18, April.
  • Handle: RePEc:plo:pone00:0195618
    DOI: 10.1371/journal.pone.0195618
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195618
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0195618&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0195618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0195618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.