Author
Listed:
- Philip Konietzke
- Oliver Weinheimer
- Mark O Wielpütz
- Dasha Savage
- Tiglath Ziyeh
- Christin Tu
- Beverly Newman
- Craig J Galbán
- Marcus A Mall
- Hans-Ulrich Kauczor
- Terry E Robinson
Abstract
Objectives: Densitometry on paired inspiratory and expiratory multidetector computed tomography (MDCT) for the quantification of air trapping is an important approach to assess functional changes in airways diseases such as cystic fibrosis (CF). For a regional analysis of functional deficits, an accurate lobe segmentation algorithm applicable to inspiratory and expiratory scans is beneficial. Materials and methods: We developed a fully automated lobe segmentation algorithm, and subsequently validated automatically generated lobe masks (ALM) against manually corrected lobe masks (MLM). Paired inspiratory and expiratory CTs from 16 children with CF (mean age 11.1±2.4) acquired at 4 time-points (baseline, 3mon, 12mon, 24mon) with 2 kernels (B30f, B60f) were segmented, resulting in 256 ALM. After manual correction spatial overlap (Dice index) and mean differences in lung volume and air trapping were calculated for ALM vs. MLM. Results: The mean overlap calculated with Dice index between ALM and MLM was 0.98±0.02 on inspiratory, and 0.86±0.07 on expiratory CT. If 6 lobes were segmented (lingula treated as separate lobe), the mean overlap was 0.97±0.02 on inspiratory, and 0.83±0.08 on expiratory CT. The mean differences in lobar volumes calculated in accordance with the approach of Bland and Altman were generally low, ranging on inspiratory CT from 5.7±52.23cm3 for the right upper lobe to 17.41±14.92cm3 for the right lower lobe. Higher differences were noted on expiratory CT. The mean differences for air trapping were even lower, ranging from 0±0.01 for the right upper lobe to 0.03±0.03 for the left lower lobe. Conclusions: Automatic lobe segmentation delivers excellent results for inspiratory and good results for expiratory CT. It may become an important component for lobe-based quantification of functional deficits in cystic fibrosis lung disease, reducing necessity for user-interaction in CT post-processing.
Suggested Citation
Philip Konietzke & Oliver Weinheimer & Mark O Wielpütz & Dasha Savage & Tiglath Ziyeh & Christin Tu & Beverly Newman & Craig J Galbán & Marcus A Mall & Hans-Ulrich Kauczor & Terry E Robinson, 2018.
"Validation of automated lobe segmentation on paired inspiratory-expiratory chest CT in 8-14 year-old children with cystic fibrosis,"
PLOS ONE, Public Library of Science, vol. 13(4), pages 1-17, April.
Handle:
RePEc:plo:pone00:0194557
DOI: 10.1371/journal.pone.0194557
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0194557. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.