IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0193703.html
   My bibliography  Save this article

Authorship attribution based on Life-Like Network Automata

Author

Listed:
  • Jeaneth Machicao
  • Edilson A Corrêa Jr.
  • Gisele H B Miranda
  • Diego R Amancio
  • Odemir M Bruno

Abstract

The authorship attribution is a problem of considerable practical and technical interest. Several methods have been designed to infer the authorship of disputed documents in multiple contexts. While traditional statistical methods based solely on word counts and related measurements have provided a simple, yet effective solution in particular cases; they are prone to manipulation. Recently, texts have been successfully modeled as networks, where words are represented by nodes linked according to textual similarity measurements. Such models are useful to identify informative topological patterns for the authorship recognition task. However, there is no consensus on which measurements should be used. Thus, we proposed a novel method to characterize text networks, by considering both topological and dynamical aspects of networks. Using concepts and methods from cellular automata theory, we devised a strategy to grasp informative spatio-temporal patterns from this model. Our experiments revealed an outperformance over structural analysis relying only on topological measurements, such as clustering coefficient, betweenness and shortest paths. The optimized results obtained here pave the way for a better characterization of textual networks.

Suggested Citation

  • Jeaneth Machicao & Edilson A Corrêa Jr. & Gisele H B Miranda & Diego R Amancio & Odemir M Bruno, 2018. "Authorship attribution based on Life-Like Network Automata," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-21, March.
  • Handle: RePEc:plo:pone00:0193703
    DOI: 10.1371/journal.pone.0193703
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193703
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0193703&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0193703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guerreiro, Lucas & Silva, Filipi N. & Amancio, Diego R., 2024. "Recovering network topology and dynamics from sequences: A machine learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    2. Neiva, Mariane B. & Bruno, Odemir M., 2023. "Exploring ordered patterns in the adjacency matrix for improving machine learning on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Heng Chen, 2023. "A lexical network approach to second language development," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
    4. Jorge A. V. Tohalino & Thiago C. Silva & Diego R. Amancio, 2024. "Using word embedding to detect keywords in texts modeled as complex networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3599-3623, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0193703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.