Author
Listed:
- Peng Li
- Chandan Karmakar
- John Yearwood
- Svetha Venkatesh
- Marimuthu Palaniswami
- Changchun Liu
Abstract
Entropy measures that assess signals’ complexity have drawn increasing attention recently in biomedical field, as they have shown the ability of capturing unique features that are intrinsic and physiologically meaningful. In this study, we applied entropy analysis to electroencephalogram (EEG) data to examine its performance in epilepsy detection based on short-term EEG, aiming at establishing a short-term analysis protocol with optimal seizure detection performance. Two classification problems were considered, i.e., 1) classifying interictal and ictal EEGs (epileptic group) from normal EEGs; and 2) classifying ictal from interictal EEGs. For each problem, we explored two protocols to analyze the entropy of EEG: i) using a single analytical window with different window lengths, and ii) using an average of multiple windows for each window length. Two entropy methods—fuzzy entropy (FuzzyEn) and distribution entropy (DistEn)–were used that have valid outputs for any given data lengths. We performed feature selection and trained classifiers based on a cross-validation process. The results show that performance of FuzzyEn and DistEn may complement each other and the best performance can be achieved by combining: 1) FuzzyEn of one 5-s window and the averaged DistEn of five 1-s windows for classifying normal from epileptic group (accuracy: 0.93, sensitivity: 0.91, specificity: 0.96); and 2) the averaged FuzzyEn of five 1-s windows and DistEn of one 5-s window for classifying ictal from interictal EEGs (accuracy: 0.91, sensitivity: 0.93, specificity: 0.90). Further studies are warranted to examine whether this proposed short-term analysis procedure can help track the epileptic activities in real time and provide prompt feedback for clinical practices.
Suggested Citation
Peng Li & Chandan Karmakar & John Yearwood & Svetha Venkatesh & Marimuthu Palaniswami & Changchun Liu, 2018.
"Detection of epileptic seizure based on entropy analysis of short-term EEG,"
PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.
Handle:
RePEc:plo:pone00:0193691
DOI: 10.1371/journal.pone.0193691
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0193691. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.