Author
Listed:
- Luca Basile
- Manuel Oviedo de la Fuente
- Nuria Torner
- Ana Martínez
- Mireia Jané
Abstract
Influenza surveillance is critical to monitoring the situation during epidemic seasons and predictive mathematic models may aid the early detection of epidemic patterns. The objective of this study was to design a real-time spatial predictive model of ILI (Influenza Like Illness) incidence rate in Catalonia using one- and two-week forecasts. The available data sources used to select explanatory variables to include in the model were the statutory reporting disease system and the sentinel surveillance system in Catalonia for influenza incidence rates, the official climate service in Catalonia for meteorological data, laboratory data and Google Flu Trend. Time series for every explanatory variable with data from the last 4 seasons (from 2010–2011 to 2013–2014) was created. A pilot test was conducted during the 2014–2015 season to select the explanatory variables to be included in the model and the type of model to be applied. During the 2015–2016 season a real-time model was applied weekly, obtaining the intensity level and predicted incidence rates with 95% confidence levels one and two weeks away for each health region. At the end of the season, the confidence interval success rate (CISR) and intensity level success rate (ILSR) were analysed. For the 2015–2016 season a CISR of 85.3% at one week and 87.1% at two weeks and an ILSR of 82.9% and 82% were observed, respectively. The model described is a useful tool although it is hard to evaluate due to uncertainty. The accuracy of prediction at one and two weeks was above 80% globally, but was lower during the peak epidemic period. In order to improve the predictive power, new explanatory variables should be included.
Suggested Citation
Luca Basile & Manuel Oviedo de la Fuente & Nuria Torner & Ana Martínez & Mireia Jané, 2018.
"Real-time predictive seasonal influenza model in Catalonia, Spain,"
PLOS ONE, Public Library of Science, vol. 13(3), pages 1-15, March.
Handle:
RePEc:plo:pone00:0193651
DOI: 10.1371/journal.pone.0193651
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0193651. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.