Author
Listed:
- Sushmitha Rao Uppugunduri
- Mohammed Abdul Rasheed
- Ashutosh Richhariya
- Soumya Jana
- Jay Chhablani
- Kiran Kumar Vupparaboina
Abstract
Objective: To develop an algorithm for automated quantification of Haller’s layer in choroid using swept-source optical coherence tomography (OCT). Background: So far, to understand the association of various diseases with structural changes of choroid, only gross indicators such as thickness, volume and vascularity index have been examined. However, certain diseases affect specific sublayers of the choroid. Accordingly, a need for targeted quantitation arises. In particular, there is significant interest in understanding Haller’s layer, a choroidal sublayer comprising relatively large blood vessels. Unfortunately, its intricate vasculature makes, manual quantitation difficult, tedious, and error-prone. To surmount this difficulty, it is imperative to develop an algorithmic method. Methodology: The primary contribution of this work consists in developing an approach for detecting the boundary between Haller’s and Sattler’s layers, the latter comprising medium-sized vessels. The proposed algorithm estimates vessel cross-sections using exponentiation-based binarization, and labels a vessel large if its cross-section exceeds certain statistically determined threshold. Finally, the desired boundary is obtained as a smooth curve joining the innermost points of such large vessels. On 50 OCT B-scans (of 50 healthy eyes), our algorithm was validated both qualitatively and quantitatively, by comparing with intra-observer variability. Extensive statistical analysis was performed using metrics including Dice coefficient (DC), correlation coefficient (CC) and absolute difference (AD). Results: The proposed algorithm achieved a mean DC of 89.48% (SD:5.03%) in close agreement with the intra-observer repeatability of 89.12% (SD:5.68%). Corresponding mean AD and mean CC were of 17.54 μm (SD:16.45μm) and 98.10% (SD:1.60%) which too approximate the respective intra-observer repeatability values 19.19 μm (SD:17.69 μm) and 98.58% (SD:1.12%). Conclusion: High correlation between algorithmic and manual delineations indicates suitability of our algorithm for clinically analyzing choroid in greater finer details, especially, in diseased eyes.
Suggested Citation
Sushmitha Rao Uppugunduri & Mohammed Abdul Rasheed & Ashutosh Richhariya & Soumya Jana & Jay Chhablani & Kiran Kumar Vupparaboina, 2018.
"Automated quantification of Haller’s layer in choroid using swept-source optical coherence tomography,"
PLOS ONE, Public Library of Science, vol. 13(3), pages 1-12, March.
Handle:
RePEc:plo:pone00:0193324
DOI: 10.1371/journal.pone.0193324
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0193324. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.